Last updated: 2018-05-15

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 388e65e

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html e05bc83 LSun 2018-05-12 Update to 1.0
    Rmd cc0ab83 Lei Sun 2018-05-11 update
    html 0f36d99 LSun 2017-12-21 Build site.
    html 853a484 LSun 2017-11-07 Build site.
    Rmd bfde8e5 LSun 2017-03-10 theoretical
    html bfde8e5 LSun 2017-03-10 theoretical
    Rmd 894c395 LSun 2017-03-07 histogram
    html 894c395 LSun 2017-03-07 histogram

Last updated: 2018-05-15

Code version: 388e65e

Introduction

Following previous simulation on randomly selected data sets, this time we first apply ash on \(z\) scores for every data set, and take a second look at those data sets on which ash makes most mistakes, or in other words, produces smallest \(\hat\pi_0\).

Simulation and ash

z = read.table("../output/z_null_liver_777.txt")
library(ashr)
n = dim(z)[1]
pihat0 = c()
for (i in 1:n) {
  ash.fit = ash(as.numeric(z[i, ]), 1, method = "fdr")
  pihat0[i] = get_pi0(ash.fit)
}

Histograms of \(z\) scores in 100 most “ash-hostile” data sets

I = order(pihat0)[1:100]
x = seq(-10, 10, 0.01)
y = dnorm(x)
k = 1
for (j in I) {
  cat("N0.", k, ": Data Set", j, "pihat0 =", pihat0[j])
  hist(as.numeric(z[j, ]), xlab = "z scores", freq = FALSE, ylim = c(0, 0.45), main = "10000 z scores, default")
  lines(x, y, col = "red")
  hist(as.numeric(z[j, ]), xlab = "z scores", freq = FALSE, ylim = c(0, 0.45), nclass = 100, main = "10000 z scores, 100 bins")
  lines(x, y, col = "red")
  k = k + 1
}
N0. 1 : Data Set 724 pihat0 = 0.01606004

N0. 2 : Data Set 33 pihat0 = 0.01680632

N0. 3 : Data Set 537 pihat0 = 0.01681555

N0. 4 : Data Set 522 pihat0 = 0.02083846

N0. 5 : Data Set 693 pihat0 = 0.02122591

N0. 6 : Data Set 840 pihat0 = 0.02316832

N0. 7 : Data Set 749 pihat0 = 0.02583276

N0. 8 : Data Set 269 pihat0 = 0.02787007

N0. 9 : Data Set 360 pihat0 = 0.0308234

N0. 10 : Data Set 23 pihat0 = 0.03139009

N0. 11 : Data Set 389 pihat0 = 0.03156173

N0. 12 : Data Set 923 pihat0 = 0.03239883

N0. 13 : Data Set 22 pihat0 = 0.03271534

N0. 14 : Data Set 885 pihat0 = 0.03413736

N0. 15 : Data Set 705 pihat0 = 0.03438913

N0. 16 : Data Set 40 pihat0 = 0.03668824

N0. 17 : Data Set 338 pihat0 = 0.0393062

N0. 18 : Data Set 379 pihat0 = 0.03958053

N0. 19 : Data Set 649 pihat0 = 0.04041784

N0. 20 : Data Set 627 pihat0 = 0.04041922

N0. 21 : Data Set 133 pihat0 = 0.04064386

N0. 22 : Data Set 915 pihat0 = 0.04083527

N0. 23 : Data Set 999 pihat0 = 0.04218153

N0. 24 : Data Set 182 pihat0 = 0.04223457

N0. 25 : Data Set 511 pihat0 = 0.04232901

N0. 26 : Data Set 122 pihat0 = 0.04301549

N0. 27 : Data Set 937 pihat0 = 0.04305909

N0. 28 : Data Set 771 pihat0 = 0.04316169

N0. 29 : Data Set 495 pihat0 = 0.04395344

N0. 30 : Data Set 41 pihat0 = 0.04491135

N0. 31 : Data Set 984 pihat0 = 0.04567195

N0. 32 : Data Set 3 pihat0 = 0.0465218

N0. 33 : Data Set 907 pihat0 = 0.04653847

N0. 34 : Data Set 355 pihat0 = 0.04750946

N0. 35 : Data Set 485 pihat0 = 0.04794909

N0. 36 : Data Set 56 pihat0 = 0.04829662

N0. 37 : Data Set 809 pihat0 = 0.04880257

N0. 38 : Data Set 404 pihat0 = 0.05059485

N0. 39 : Data Set 858 pihat0 = 0.05110069

N0. 40 : Data Set 77 pihat0 = 0.05151585

N0. 41 : Data Set 800 pihat0 = 0.05218407

N0. 42 : Data Set 562 pihat0 = 0.05247834

N0. 43 : Data Set 893 pihat0 = 0.05252202

N0. 44 : Data Set 403 pihat0 = 0.0531628

N0. 45 : Data Set 780 pihat0 = 0.05426134

N0. 46 : Data Set 538 pihat0 = 0.05493143

N0. 47 : Data Set 324 pihat0 = 0.05506971

N0. 48 : Data Set 176 pihat0 = 0.05513259

N0. 49 : Data Set 972 pihat0 = 0.05539611

N0. 50 : Data Set 644 pihat0 = 0.0557842

N0. 51 : Data Set 977 pihat0 = 0.0564768

N0. 52 : Data Set 467 pihat0 = 0.06112237

N0. 53 : Data Set 857 pihat0 = 0.06183555

N0. 54 : Data Set 783 pihat0 = 0.06208376

N0. 55 : Data Set 976 pihat0 = 0.06343862

N0. 56 : Data Set 968 pihat0 = 0.06385437

N0. 57 : Data Set 942 pihat0 = 0.06399678

N0. 58 : Data Set 402 pihat0 = 0.06468693

N0. 59 : Data Set 341 pihat0 = 0.06681535

N0. 60 : Data Set 411 pihat0 = 0.06812445

N0. 61 : Data Set 484 pihat0 = 0.06857855

N0. 62 : Data Set 476 pihat0 = 0.06944478

N0. 63 : Data Set 407 pihat0 = 0.07139176

N0. 64 : Data Set 871 pihat0 = 0.07236197

N0. 65 : Data Set 638 pihat0 = 0.07281058

N0. 66 : Data Set 232 pihat0 = 0.07317683

N0. 67 : Data Set 778 pihat0 = 0.07619716

N0. 68 : Data Set 349 pihat0 = 0.07627442

N0. 69 : Data Set 985 pihat0 = 0.07865805

N0. 70 : Data Set 259 pihat0 = 0.0794454

N0. 71 : Data Set 452 pihat0 = 0.079703

N0. 72 : Data Set 268 pihat0 = 0.08182634

N0. 73 : Data Set 526 pihat0 = 0.08340671

N0. 74 : Data Set 274 pihat0 = 0.08580661

N0. 75 : Data Set 685 pihat0 = 0.08592309

N0. 76 : Data Set 499 pihat0 = 0.08826948

N0. 77 : Data Set 982 pihat0 = 0.08854547

N0. 78 : Data Set 582 pihat0 = 0.08899861

N0. 79 : Data Set 953 pihat0 = 0.08900989

N0. 80 : Data Set 811 pihat0 = 0.08962902

N0. 81 : Data Set 575 pihat0 = 0.0946117

N0. 82 : Data Set 997 pihat0 = 0.09560788

N0. 83 : Data Set 231 pihat0 = 0.09686204

N0. 84 : Data Set 781 pihat0 = 0.09690435

N0. 85 : Data Set 853 pihat0 = 0.09889116

N0. 86 : Data Set 868 pihat0 = 0.09918104

N0. 87 : Data Set 502 pihat0 = 0.1001788

N0. 88 : Data Set 606 pihat0 = 0.1033893

N0. 89 : Data Set 912 pihat0 = 0.106048

N0. 90 : Data Set 659 pihat0 = 0.1065714

N0. 91 : Data Set 501 pihat0 = 0.1090034

N0. 92 : Data Set 296 pihat0 = 0.1115216

N0. 93 : Data Set 895 pihat0 = 0.1119629

N0. 94 : Data Set 153 pihat0 = 0.1148195

N0. 95 : Data Set 477 pihat0 = 0.1172838

N0. 96 : Data Set 769 pihat0 = 0.1187511

N0. 97 : Data Set 555 pihat0 = 0.1210902

N0. 98 : Data Set 475 pihat0 = 0.1273824

N0. 99 : Data Set 584 pihat0 = 0.1291777

N0. 100 : Data Set 949 pihat0 = 0.1308901

Take a closer look at the \(p\) values in 100 most “ash-hostile” data sets

We take a closer look at the behavior of \(p\) values in these most “ash-hostile” data sets, and also apply Benjamini-Hochberg’s FDR procedure on them, to see if BH is robust enough against the foes that make ash fail badly. False discoveries produced by BH are indicated as green points.

p = read.table("../output/p_null_liver_777.txt")
fd.bh = c()

for (i in 1 : n[1]) {
  p_BH = p.adjust(p[i, ], method = "BH")
  fd.bh[i] = sum(p_BH <= 0.05)
}
I = order(pihat0)[1:100]
x = seq(-10, 10, 0.01)
y = dnorm(x)
k = 1
m = dim(p)[2]
for (j in I) {
  cat("N0.", k, ": Data Set", j, "; pihat0 =", pihat0[j], "; Number of False Discoveries:", fd.bh[j])
  hist(as.numeric(z[j, ]), xlab = "z scores", freq = FALSE, ylim = c(0, 0.45), nclass = 100, main = "10000 z scores, 100 bins")
  lines(x, y, col = "red")
  qqnorm(as.numeric(z[j, ]), main = "Normal Q-Q plot for z scores")
  abline(0, 1)
  plot(sort(as.numeric(p[j, ])), xlab = "Order", ylab = "Ordered p value", main = "All p values")
  abline(0, 1 / m, col = "blue")
  abline(0, 0.05 / m, col = "red")
  legend("top", lty = 1, col = c("blue", "red"), c("Uniform", "BH, FDR = 0.05"))
  
  pj = sort(as.numeric(p[j, ]))

  plot(pj[1:max(100, fd.bh[j])], xlab = "Order", ylab = "Ordered p value", main = "Zoom-in to 100 smallest p values", ylim = c(0, pj[max(100, fd.bh[j])]))
  abline(0, 1 / m, col = "blue")
  points(pj[1:fd.bh[j]], col = "green", pch = 19)
  abline(0, 0.05 / m, col = "red")
  legend("top", lty = 1, col = c("blue", "red"), c("Uniform", "BH, FDR = 0.05"))
  
  plot(pj[pj <= 0.01], xlab = "Order", ylab = "Ordered p value", main = "Zoom-in to p values <= 0.01", ylim = c(0, 0.01))
  abline(0, 1 / m, col = "blue")
  points(pj[1:fd.bh[j]], col = "green", pch = 19)
  abline(0, 0.05 / m, col = "red")
  legend("top", lty = 1, col = c("blue", "red"), c("Uniform", "BH, FDR = 0.05"))
  
  plot(pj[pj <= 0.05], xlab = "Order", ylab = "Ordered p value", main = "Zoom-in to p values <= 0.05", ylim = c(0, 0.05))
  abline(0, 1 / m, col = "blue")
  points(pj[1:fd.bh[j]], col = "green", pch = 19)
  abline(0, 0.05 / m, col = "red")
  legend("top", lty = 1, col = c("blue", "red"), c("Uniform", "BH, FDR = 0.05"))
  
  k = k + 1
}
N0. 1 : Data Set 724 ; pihat0 = 0.01606004 ; Number of False Discoveries: 79

N0. 2 : Data Set 33 ; pihat0 = 0.01680632 ; Number of False Discoveries: 0

N0. 3 : Data Set 537 ; pihat0 = 0.01681555 ; Number of False Discoveries: 0

N0. 4 : Data Set 522 ; pihat0 = 0.02083846 ; Number of False Discoveries: 4

N0. 5 : Data Set 693 ; pihat0 = 0.02122591 ; Number of False Discoveries: 0

N0. 6 : Data Set 840 ; pihat0 = 0.02316832 ; Number of False Discoveries: 28

N0. 7 : Data Set 749 ; pihat0 = 0.02583276 ; Number of False Discoveries: 114

N0. 8 : Data Set 269 ; pihat0 = 0.02787007 ; Number of False Discoveries: 1

N0. 9 : Data Set 360 ; pihat0 = 0.0308234 ; Number of False Discoveries: 6

N0. 10 : Data Set 23 ; pihat0 = 0.03139009 ; Number of False Discoveries: 408

N0. 11 : Data Set 389 ; pihat0 = 0.03156173 ; Number of False Discoveries: 11

N0. 12 : Data Set 923 ; pihat0 = 0.03239883 ; Number of False Discoveries: 1

N0. 13 : Data Set 22 ; pihat0 = 0.03271534 ; Number of False Discoveries: 1

N0. 14 : Data Set 885 ; pihat0 = 0.03413736 ; Number of False Discoveries: 0

N0. 15 : Data Set 705 ; pihat0 = 0.03438913 ; Number of False Discoveries: 0

N0. 16 : Data Set 40 ; pihat0 = 0.03668824 ; Number of False Discoveries: 0

N0. 17 : Data Set 338 ; pihat0 = 0.0393062 ; Number of False Discoveries: 0

N0. 18 : Data Set 379 ; pihat0 = 0.03958053 ; Number of False Discoveries: 0

N0. 19 : Data Set 649 ; pihat0 = 0.04041784 ; Number of False Discoveries: 0

N0. 20 : Data Set 627 ; pihat0 = 0.04041922 ; Number of False Discoveries: 0

N0. 21 : Data Set 133 ; pihat0 = 0.04064386 ; Number of False Discoveries: 0

N0. 22 : Data Set 915 ; pihat0 = 0.04083527 ; Number of False Discoveries: 0

N0. 23 : Data Set 999 ; pihat0 = 0.04218153 ; Number of False Discoveries: 0

N0. 24 : Data Set 182 ; pihat0 = 0.04223457 ; Number of False Discoveries: 0

N0. 25 : Data Set 511 ; pihat0 = 0.04232901 ; Number of False Discoveries: 0

N0. 26 : Data Set 122 ; pihat0 = 0.04301549 ; Number of False Discoveries: 331

N0. 27 : Data Set 937 ; pihat0 = 0.04305909 ; Number of False Discoveries: 0

N0. 28 : Data Set 771 ; pihat0 = 0.04316169 ; Number of False Discoveries: 12

N0. 29 : Data Set 495 ; pihat0 = 0.04395344 ; Number of False Discoveries: 0

N0. 30 : Data Set 41 ; pihat0 = 0.04491135 ; Number of False Discoveries: 0

N0. 31 : Data Set 984 ; pihat0 = 0.04567195 ; Number of False Discoveries: 7

N0. 32 : Data Set 3 ; pihat0 = 0.0465218 ; Number of False Discoveries: 0

N0. 33 : Data Set 907 ; pihat0 = 0.04653847 ; Number of False Discoveries: 0

N0. 34 : Data Set 355 ; pihat0 = 0.04750946 ; Number of False Discoveries: 639

N0. 35 : Data Set 485 ; pihat0 = 0.04794909 ; Number of False Discoveries: 9

N0. 36 : Data Set 56 ; pihat0 = 0.04829662 ; Number of False Discoveries: 35

N0. 37 : Data Set 809 ; pihat0 = 0.04880257 ; Number of False Discoveries: 0

N0. 38 : Data Set 404 ; pihat0 = 0.05059485 ; Number of False Discoveries: 0

N0. 39 : Data Set 858 ; pihat0 = 0.05110069 ; Number of False Discoveries: 16

N0. 40 : Data Set 77 ; pihat0 = 0.05151585 ; Number of False Discoveries: 7

N0. 41 : Data Set 800 ; pihat0 = 0.05218407 ; Number of False Discoveries: 0

N0. 42 : Data Set 562 ; pihat0 = 0.05247834 ; Number of False Discoveries: 0

N0. 43 : Data Set 893 ; pihat0 = 0.05252202 ; Number of False Discoveries: 0

N0. 44 : Data Set 403 ; pihat0 = 0.0531628 ; Number of False Discoveries: 1

N0. 45 : Data Set 780 ; pihat0 = 0.05426134 ; Number of False Discoveries: 0

N0. 46 : Data Set 538 ; pihat0 = 0.05493143 ; Number of False Discoveries: 0

N0. 47 : Data Set 324 ; pihat0 = 0.05506971 ; Number of False Discoveries: 0

N0. 48 : Data Set 176 ; pihat0 = 0.05513259 ; Number of False Discoveries: 0

N0. 49 : Data Set 972 ; pihat0 = 0.05539611 ; Number of False Discoveries: 0

N0. 50 : Data Set 644 ; pihat0 = 0.0557842 ; Number of False Discoveries: 0

N0. 51 : Data Set 977 ; pihat0 = 0.0564768 ; Number of False Discoveries: 0

N0. 52 : Data Set 467 ; pihat0 = 0.06112237 ; Number of False Discoveries: 0

N0. 53 : Data Set 857 ; pihat0 = 0.06183555 ; Number of False Discoveries: 0

N0. 54 : Data Set 783 ; pihat0 = 0.06208376 ; Number of False Discoveries: 170

N0. 55 : Data Set 976 ; pihat0 = 0.06343862 ; Number of False Discoveries: 0

N0. 56 : Data Set 968 ; pihat0 = 0.06385437 ; Number of False Discoveries: 0

N0. 57 : Data Set 942 ; pihat0 = 0.06399678 ; Number of False Discoveries: 0

N0. 58 : Data Set 402 ; pihat0 = 0.06468693 ; Number of False Discoveries: 0

N0. 59 : Data Set 341 ; pihat0 = 0.06681535 ; Number of False Discoveries: 0

N0. 60 : Data Set 411 ; pihat0 = 0.06812445 ; Number of False Discoveries: 0

N0. 61 : Data Set 484 ; pihat0 = 0.06857855 ; Number of False Discoveries: 0

N0. 62 : Data Set 476 ; pihat0 = 0.06944478 ; Number of False Discoveries: 0

N0. 63 : Data Set 407 ; pihat0 = 0.07139176 ; Number of False Discoveries: 0

N0. 64 : Data Set 871 ; pihat0 = 0.07236197 ; Number of False Discoveries: 0

N0. 65 : Data Set 638 ; pihat0 = 0.07281058 ; Number of False Discoveries: 0

N0. 66 : Data Set 232 ; pihat0 = 0.07317683 ; Number of False Discoveries: 0

N0. 67 : Data Set 778 ; pihat0 = 0.07619716 ; Number of False Discoveries: 1

N0. 68 : Data Set 349 ; pihat0 = 0.07627442 ; Number of False Discoveries: 0

N0. 69 : Data Set 985 ; pihat0 = 0.07865805 ; Number of False Discoveries: 0

N0. 70 : Data Set 259 ; pihat0 = 0.0794454 ; Number of False Discoveries: 0

N0. 71 : Data Set 452 ; pihat0 = 0.079703 ; Number of False Discoveries: 0

N0. 72 : Data Set 268 ; pihat0 = 0.08182634 ; Number of False Discoveries: 0

N0. 73 : Data Set 526 ; pihat0 = 0.08340671 ; Number of False Discoveries: 0

N0. 74 : Data Set 274 ; pihat0 = 0.08580661 ; Number of False Discoveries: 2

N0. 75 : Data Set 685 ; pihat0 = 0.08592309 ; Number of False Discoveries: 0

N0. 76 : Data Set 499 ; pihat0 = 0.08826948 ; Number of False Discoveries: 0

N0. 77 : Data Set 982 ; pihat0 = 0.08854547 ; Number of False Discoveries: 0

N0. 78 : Data Set 582 ; pihat0 = 0.08899861 ; Number of False Discoveries: 0

N0. 79 : Data Set 953 ; pihat0 = 0.08900989 ; Number of False Discoveries: 0

N0. 80 : Data Set 811 ; pihat0 = 0.08962902 ; Number of False Discoveries: 0

N0. 81 : Data Set 575 ; pihat0 = 0.0946117 ; Number of False Discoveries: 1

N0. 82 : Data Set 997 ; pihat0 = 0.09560788 ; Number of False Discoveries: 1

N0. 83 : Data Set 231 ; pihat0 = 0.09686204 ; Number of False Discoveries: 0

N0. 84 : Data Set 781 ; pihat0 = 0.09690435 ; Number of False Discoveries: 0

N0. 85 : Data Set 853 ; pihat0 = 0.09889116 ; Number of False Discoveries: 0

N0. 86 : Data Set 868 ; pihat0 = 0.09918104 ; Number of False Discoveries: 0

N0. 87 : Data Set 502 ; pihat0 = 0.1001788 ; Number of False Discoveries: 0

N0. 88 : Data Set 606 ; pihat0 = 0.1033893 ; Number of False Discoveries: 0

N0. 89 : Data Set 912 ; pihat0 = 0.106048 ; Number of False Discoveries: 2

N0. 90 : Data Set 659 ; pihat0 = 0.1065714 ; Number of False Discoveries: 0

N0. 91 : Data Set 501 ; pihat0 = 0.1090034 ; Number of False Discoveries: 1

N0. 92 : Data Set 296 ; pihat0 = 0.1115216 ; Number of False Discoveries: 0

N0. 93 : Data Set 895 ; pihat0 = 0.1119629 ; Number of False Discoveries: 0

N0. 94 : Data Set 153 ; pihat0 = 0.1148195 ; Number of False Discoveries: 0

N0. 95 : Data Set 477 ; pihat0 = 0.1172838 ; Number of False Discoveries: 0

N0. 96 : Data Set 769 ; pihat0 = 0.1187511 ; Number of False Discoveries: 1

N0. 97 : Data Set 555 ; pihat0 = 0.1210902 ; Number of False Discoveries: 0

N0. 98 : Data Set 475 ; pihat0 = 0.1273824 ; Number of False Discoveries: 0

N0. 99 : Data Set 584 ; pihat0 = 0.1291777 ; Number of False Discoveries: 0

N0. 100 : Data Set 949 ; pihat0 = 0.1308901 ; Number of False Discoveries: 0

write.table(pihat0, file = "../output/pihat0_z_null_liver_777.txt", quote = FALSE, col.names = FALSE, row.names = FALSE)

Session Information

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.16      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] stringi_1.1.6     whisker_0.3-2     R.oo_1.21.0      
[13] R.utils_2.6.0     rmarkdown_1.9     tools_3.4.3      
[16] stringr_1.3.0     yaml_2.1.18       compiler_3.4.3   
[19] htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.0.1