cashr
Last updated: 2018-12-14
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 73ed3b7
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_paper_fig1_cache/
Ignored: analysis/cash_paper_fig_avgecdf_cache/
Ignored: analysis/cash_paper_fig_deconv_cache/
Ignored: analysis/cash_paper_fig_leukemia_cache/
Ignored: analysis/cash_plots_2_cache/
Ignored: analysis/cash_plots_3_cache/
Ignored: analysis/cash_plots_4_cache/
Ignored: analysis/cash_plots_5_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Ignored: output/paper/
Unstaged changes:
Modified: analysis/cash_plots_2.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
rmd | 019a1a7 | Lei Sun | 2018-11-18 | noise and g1 plots |
rmd | 572849d | Lei Sun | 2018-11-17 | noise sep |
rmd | 7fd2097 | LSun | 2018-11-17 | noise sep |
html | 562bda2 | Lei Sun | 2018-10-21 | Build site. |
rmd | 7b6b664 | Lei Sun | 2018-10-21 | wflow_publish(c(“analysis/cash_paper_fig_gd.rmd”, |
html | 888ff39 | LSun | 2018-10-11 | Build site. |
rmd | 5733781 | LSun | 2018-10-11 | wflow_publish(c(“analysis/cash_paper_fig_g1sep.rmd”, |
rmd | b2e9751 | Lei Sun | 2018-10-11 | change the shape of the mean points |
html | c12d68a | Lei Sun | 2018-10-09 | Build site. |
rmd | c469399 | Lei Sun | 2018-10-09 | wflow_publish(c(“analysis/cash_paper_fig_g1sep.rmd”, |
html | f7bde81 | Lei Sun | 2018-10-06 | Build site. |
rmd | 3b81007 | Lei Sun | 2018-10-06 | wflow_publish(c(“analysis/cash_paper_fig_g1sep.rmd”, |
html | 133541a | LSun | 2018-10-05 | Build site. |
rmd | 49f870a | LSun | 2018-10-05 | wflow_publish(c(“cash_paper_fig_leukemia.rmd”, “cash_paper_fig1.rmd”, |
Generate the inflated vs in-between vs deflated noise figure in the paper.
library(ggplot2)
Warning: package 'ggplot2' was built under R version 3.4.4
FDP.list <- readRDS("../output/paper/simulation/FDP.list.rds")
TDP.list <- readRDS("../output/paper/simulation/TDP.list.rds")
z.list <- readRDS("../output/paper/simulation/z.list.rds")
pi0.list <- readRDS("../output/paper/simulation/pi0.list.rds")
pi0.vec <- c(0.5, 0.9, 0.99)
q.vec <- seq(0.001, 0.20, by = 0.001)
q <- 0.1
method.name.FDR <- c("cashr", "BH", "qvalue", "ashr", "locfdr")
method.col.FDR <- scales::hue_pal()(length(method.name.FDR))[c(5, 1, 2, 4, 3)]
#####################################
boxplot.quantile <- function(x) {
r <- quantile(x, probs = c(0.05, 0.25, 0.5, 0.75, 0.95))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
return(r)
}
boxplot.quantile.sq <- function (x) {
r <- sqrt(quantile(x^2, probs = c(0.05, 0.25, 0.5, 0.75, 0.95)))
names(r) <- c("ymin", "lower", "middle", "upper", "ymax")
return(r)
}
mean.sq <- function (x) {
r <- sqrt(mean(x^2))
return(r)
}
mysqrt_trans <- function() {
scales::trans_new("mysqrt",
transform = base::sqrt,
inverse = function(x) ifelse(x<0, 0, x^2),
domain = c(0, Inf))
}
###############################
sd.z <- sapply(z.list, sd)
Noise <- cut(sd.z, breaks = c(0, quantile(sd.z, probs = 1 : 2 / 3), Inf), labels = c("Pseudo-deflation", "In-between", "Pseudo-inflation"))
###############################
pi0.0.9 <- which(pi0.list == 0.9)
sd.z.0.9 <- sd.z[pi0.0.9]
typical.noise <- pi0.0.9[order(sd.z.0.9)[floor(quantile(seq(sd.z.0.9), c(0.1, 0.5, 0.9)))]]
z.list.sel <- z.list[typical.noise]
names(z.list.sel) <- levels(Noise)
z.sep.ggdata <- reshape2::melt(z.list.sel, value.name = "z")
z.sep.ggdata$L1 <- factor(z.sep.ggdata$L1, levels = levels(Noise))
z.sep.plot <- ggplot(data = z.sep.ggdata, aes(x = z)) +
geom_histogram(aes(y = ..density..), binwidth = 0.2) +
facet_wrap(~L1, nrow = 1) +
stat_function(fun = dnorm, aes(color = "N(0,1)"), lwd = 1.5, show.legend = TRUE) +
# scale_color_manual(values = "blue") +
theme(# axis.title.x = element_text(size = 15),
# axis.text.x = element_text(size = 10),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 10),
strip.text = element_text(size = 15),
# strip.text = element_blank(),
legend.position = "left",
# legend.title = element_blank(),
legend.text = element_text(size = 12),
legend.key = element_blank()
)
#########################################
FDP.q <- FDP.list[[which(q.vec == q)]]
FDP.q.noise.mat <- rbind.data.frame(
cbind.data.frame(Noise = rep("All", length(Noise)),
pi0 = factor(do.call(rbind, pi0.list)),
FDP.q),
cbind.data.frame(Noise,
pi0 = factor(do.call(rbind, pi0.list)),
FDP.q)
)
FDP.q.ggdata <- reshape2::melt(FDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "FDP")
FDP.q.ggdata$Method <- factor(FDP.q.ggdata$Method, levels = c("CASH", "BHq", "qvalue", "ASH", "locfdr"))
FDP.q.ggdata$Method <- plyr::mapvalues(FDP.q.ggdata$Method, from = c("CASH", "BHq", "qvalue", "ASH", "locfdr"), to = c("cashr", "BH", "qvalue", "ashr", "locfdr"))
FDP.q.ggdata.0.9 <- FDP.q.ggdata[FDP.q.ggdata$pi0 == 0.9, ]
################################################
TDP.q <- TDP.list[[which(q.vec == q)]]
TDP.q.noise.mat <- rbind.data.frame(
cbind.data.frame(Noise = rep("All", length(Noise)),
pi0 = factor(do.call(rbind, pi0.list)),
TDP.q),
cbind.data.frame(Noise,
pi0 = factor(do.call(rbind, pi0.list)),
TDP.q)
)
TDP.q.ggdata <- reshape2::melt(TDP.q.noise.mat, id.vars = c("Noise", "pi0"), variable.name = "Method", value.name = "TDP")
TDP.q.ggdata$Method <- factor(TDP.q.ggdata$Method, levels = c("CASH", "BHq", "qvalue", "ASH", "locfdr"))
TDP.q.ggdata$Method <- plyr::mapvalues(TDP.q.ggdata$Method, from = c("CASH", "BHq", "qvalue", "ASH", "locfdr"), to = c("cashr", "BH", "qvalue", "ashr", "locfdr"))
TDP.q.ggdata.0.9 <- TDP.q.ggdata[TDP.q.ggdata$pi0 == 0.9, ]
##############################################################
# FDP.q.all.sep.plot <- ggplot(data = FDP.q.ggdata, aes(x = pi0, y = FDP, fill = Method, color = Method)) +
# stat_summary(fun.data = boxplot.quantile, geom = "boxplot", position = "dodge") +
# stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = TRUE) +
# scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
# scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
# facet_wrap(~Noise, nrow = 1) +
# geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
# labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("Nominal FDR = ", .(q)))) +
# theme(plot.title = element_text(size = 12, hjust = 0),
# axis.title.x = element_text(size = 15),
# axis.text.x = element_text(size = 10),
# axis.title.y = element_text(size = 15),
# axis.text.y = element_text(size = 10),
# strip.text = element_text(size = 15),
# legend.position = "bottom",
# legend.background = element_rect(color = "grey"),
# legend.text = element_text(size = 12)
# )
FDP.q.all.sep.plot <- ggplot(data = FDP.q.ggdata.0.9, aes(x = Method, y = FDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile, geom = "boxplot", aes(width = 0.5), position = position_dodge(), show.legend = FALSE) +
stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
coord_flip() +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
labs(y = "FDP", title = bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")"))) +
expand_limits(y = 0) +
theme(plot.title = element_text(size = 12, hjust = 0),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
FDP.sqrt.q.all.sep.plot <- ggplot(data = FDP.q.ggdata.0.9, aes(x = Method, y = FDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile.sq, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
stat_summary(fun.y = mean.sq, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
scale_y_continuous(trans = "mysqrt", breaks = c(0, 0.1, 0.2, 0.4, 0.6, 0.8)) +
coord_flip() +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")"))) +
expand_limits(y = 0) +
theme(plot.title = element_text(size = 12, hjust = 0),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
###############################################
blank.ggdata <- data.frame()
blank.plot <- ggplot(data = blank.ggdata) +
theme(panel.background = element_blank(),
panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.background = element_blank()) +
geom_blank()
z.sep.plot.save <- gridExtra::arrangeGrob(blank.plot, z.sep.plot, nrow = 1, widths = c(0.55, 3.5))
FDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.q.all.sep.plot, heights = c(1, 1.2))
FDP.sqrt.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.sqrt.q.all.sep.plot, heights = c(1, 1.2))
ggsave("../output/paper/FDP.q.sep.pdf", FDP.q.sep.plot.save, height = 4.5, width = 10)
ggsave("../output/paper/FDP.sqrt.q.sep.pdf", FDP.sqrt.q.sep.plot.save, height = 4.5, width = 10)
##############################################
TDP.q.all.sep.plot <- ggplot(data = TDP.q.ggdata.0.9, aes(x = Method, y = TDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
coord_flip() +
stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
labs(x = expression(pi[0]), y = "TDP") +
expand_limits(y = 0) +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
FDP.TDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.q.all.sep.plot + theme(plot.title = element_text(size = 15, hjust = 0)), TDP.q.all.sep.plot, heights = c(1, 1.2, 1.1))
ggsave("../output/paper/FDP.TDP.q.sep.pdf", FDP.TDP.q.sep.plot.save, height = 6.5, width = 10)
FDP.sqrt.TDP.q.sep.plot.save <- gridExtra::arrangeGrob(z.sep.plot.save, FDP.sqrt.q.all.sep.plot + theme(plot.title = element_text(size = 15, hjust = 0)), TDP.q.all.sep.plot, heights = c(1, 1.2, 1.1))
FDP.sqrt.TDP.q.sep.plot.save <- gridExtra::arrangeGrob(
z.sep.plot +
labs(title = "Examples of realized correlated N(0,1) noise") +
scale_color_manual(values = "blue") +
theme(legend.title = element_blank(),
# legend.title = element_text(size = 15),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 67.5), "points"),
plot.title = element_text(size = 12, hjust = 0.5),
strip.text = element_text(size = 12),
axis.title.x = element_blank(),
axis.text.x = element_text(size = 10),
axis.title.y = element_text(size = 12)
),
gridExtra::arrangeGrob(
FDP.sqrt.q.all.sep.plot +
labs(title = "FDP") +
theme(plot.title = element_text(size = 12, hjust = 0.5),
axis.title.x = element_blank(),
strip.text = element_text(size = 12),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.text.y = element_text(size = 12)
),
TDP.q.all.sep.plot +
labs(title = "TDP") +
theme(plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.title.x = element_blank(),
strip.text = element_text(size = 12),
plot.title = element_text(size = 12, hjust = 0.5),
axis.text.y = element_text(size = 12)
),
heights = c(1, 1),
top = grid::textGrob(bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")")), gp = grid::gpar(fontsize = 12), hjust = 1.15)
),
heights = c(1, 2)
)
ggsave("../output/paper/FDP.sqrt.TDP.q.sep.pdf", FDP.sqrt.TDP.q.sep.plot.save, height = 6, width = 8)
FDP_noise.save <- gridExtra::arrangeGrob(
z.sep.plot +
labs(y = 'Density', title = "Examples of realized correlated N(0,1) noise") +
scale_color_manual(values = "blue") +
theme(legend.title = element_blank(),
# legend.title = element_text(size = 15),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 110), "points"),
plot.title = element_text(size = 15),
strip.text = element_text(size = 15),
axis.title.x = element_blank(),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15)
),
FDP.sqrt.q.all.sep.plot +
labs(x = 'FDP', title = bquote(paste('Distribution of empirical FDP at nominal FDR = ', .(q)))) +
theme(plot.title = element_text(size = 15),
axis.title.x = element_text(size = 15),
strip.text = element_text(size = 15),
plot.margin = grid::unit(c(15, 5.5, 5.5, 5.5), "points"),
axis.text.y = element_text(size = 15),
axis.text.x = element_text(size = 12)
),
TDP.q.all.sep.plot +
labs(x = 'TDP', title = bquote(paste('Distribution of empirical TDP at nominal FDR = ', .(q)))) +
theme(plot.margin = grid::unit(c(15, 5.5, 5.5, 5.5), "points"),
axis.title.x = element_text(size = 15),
strip.text = element_text(size = 15),
plot.title = element_text(size = 15),
axis.text.y = element_text(size = 15),
axis.text.x = element_text(size = 12)
),
heights = c(1.75, 2, 2)
)
ggsave("../output/paper/FDP_noise.pdf", FDP_noise.save, height = 7, width = 10)
FDP.q.ggdata.0.9$Noise <- factor(FDP.q.ggdata.0.9$Noise, levels = levels(FDP.q.ggdata.0.9$Noise)[c(2, 3, 4, 1)])
TDP.q.ggdata.0.9$Noise <- factor(TDP.q.ggdata.0.9$Noise, levels = levels(TDP.q.ggdata.0.9$Noise)[c(2, 3, 4, 1)])
FDP.sqrt.q.all.sep.plot <- ggplot(data = FDP.q.ggdata.0.9, aes(x = Method, y = FDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile.sq, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
stat_summary(fun.y = mean.sq, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
scale_y_continuous(trans = "mysqrt", breaks = c(0, 0.1, 0.2, 0.4, 0.6, 0.8)) +
coord_flip() +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
geom_hline(yintercept = q, col = "black", linetype = "dashed", size = 1) +
labs(x = expression(pi[0]), y = "FDP", title = bquote(paste("Nominal FDR = ", .(q), " (", g[1], " is Gaussian; ", pi[0] == 0.9, ")"))) +
expand_limits(y = 0) +
theme(plot.title = element_text(size = 12, hjust = 0),
axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
TDP.q.all.sep.plot <- ggplot(data = TDP.q.ggdata.0.9, aes(x = Method, y = TDP, fill = Method, color = Method)) +
stat_summary(fun.data = boxplot.quantile, geom = "boxplot", aes(width = 0.75), position = position_dodge(), show.legend = FALSE) +
coord_flip() +
stat_summary(fun.y = mean, geom = "point", position = position_dodge(width = 0.9), show.legend = FALSE, shape = 13, size = 3) +
scale_x_discrete(limits = rev(levels(FDP.q.ggdata.0.9$Method))) +
scale_color_manual(labels = method.name.FDR, values = method.col.FDR) +
scale_fill_manual(labels = method.name.FDR, values = alpha(method.col.FDR, 0.35)) +
facet_wrap(~Noise, nrow = 1) +
labs(x = expression(pi[0]), y = "TDP") +
expand_limits(y = 0) +
theme(axis.title.y = element_blank(),
axis.text.y = element_text(size = 15),
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 10),
strip.text = element_text(size = 15),
legend.position = "bottom",
legend.background = element_rect(color = "grey"),
legend.text = element_text(size = 12)
)
Warning: Ignoring unknown aesthetics: width
FDP_noise_new.save <- gridExtra::arrangeGrob(
z.sep.plot +
labs(y = 'Density', title = '(a): Examples of realized correlated N(0,1) noise') +
scale_color_manual(values = "blue") +
expand_limits(x = -4) +
theme(legend.title = element_blank(),
legend.position = 'right',
plot.margin = grid::unit(c(10, 95.5, 10, 17.5), "points"),
plot.title = element_text(size = 15),
strip.text = element_text(size = 15),
axis.title.x = element_blank(),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15)
),
FDP.sqrt.q.all.sep.plot +
labs(x = 'FDP', title = bquote(paste('(b): Distribution of FDP'))) +
theme(plot.title = element_text(size = 15),
axis.title.x = element_text(size = 15),
strip.text = element_text(size = 15),
plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.text.y = element_text(size = 15),
axis.text.x = element_text(size = 12)
),
TDP.q.all.sep.plot +
labs(x = 'TDP', title = bquote(paste('(c): Distribution of TDP'))) +
theme(plot.margin = grid::unit(c(5.5, 5.5, 5.5, 5.5), "points"),
axis.title.x = element_text(size = 15),
strip.text = element_text(size = 15),
plot.title = element_text(size = 15),
axis.text.y = element_text(size = 15),
axis.text.x = element_text(size = 12)
),
heights = c(1.1, 1, 1),
top = grid::textGrob(label = bquote(paste(
'Nominal FDR = ', .(q), ' (', g[1], ' is Guassian; ', pi[0] == 0.9, ')')), gp = grid::gpar(fontsize = 15, fontface = 'bold'), hjust = 1.125)
)
ggsave("../output/paper/FDP_noise_new.pdf", FDP_noise_new.save, height = 7, width = 10)
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_3.1.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.16 compiler_3.4.3 pillar_1.2.2
[4] git2r_0.23.0 plyr_1.8.4 workflowr_1.1.1
[7] bindr_0.1.1 R.methodsS3_1.7.1 R.utils_2.6.0
[10] tools_3.4.3 digest_0.6.15 evaluate_0.10.1
[13] tibble_1.4.2 gtable_0.2.0 pkgconfig_2.0.1
[16] rlang_0.3.0.1 yaml_2.1.19 bindrcpp_0.2.2
[19] gridExtra_2.3 withr_2.1.2 stringr_1.3.1
[22] dplyr_0.7.4 knitr_1.20 rprojroot_1.3-2
[25] grid_3.4.3 glue_1.2.0 R6_2.2.2
[28] rmarkdown_1.9 reshape2_1.4.3 magrittr_1.5
[31] whisker_0.3-2 backports_1.1.2 scales_0.5.0
[34] htmltools_0.3.6 assertthat_0.2.0 colorspace_1.3-2
[37] labeling_0.3 stringi_1.2.2 lazyeval_0.2.1
[40] munsell_0.4.3 R.oo_1.22.0
This reproducible R Markdown analysis was created with workflowr 1.1.1