Last updated: 2018-12-14
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 73ed3b7
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_paper_fig1_cache/
Ignored: analysis/cash_paper_fig_avgecdf_cache/
Ignored: analysis/cash_paper_fig_deconv_cache/
Ignored: analysis/cash_paper_fig_leukemia_cache/
Ignored: analysis/cash_plots_2_cache/
Ignored: analysis/cash_plots_3_cache/
Ignored: analysis/cash_plots_4_cache/
Ignored: analysis/cash_plots_5_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Ignored: output/paper/
Unstaged changes:
Modified: analysis/cash_plots_2.rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
rmd | 18992a6 | Lei Sun | 2018-11-10 | marginal dist plot |
# source("../code/count_to_summary.R")
#
# r <- readRDS("../data/liver.rds")
# ngene <- 1e4
#
# Y = lcpm(r)
# subset = top_genes_index(ngene, Y)
# r = r[subset,]
#
# nsamp <- 5
# set.seed(7)
# nsim <- 1e4
# Z.list <- W <- list()
# for (i in 1 : nsim) {
# ## generate data
# counts <- r[, sample(ncol(r), 2 * nsamp)]
# design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
# summary <- count_to_summary(counts, design)
# Z <- summary$z
# Z.list[[i]] <- Z
# Z.GD <- gdfit.mom(Z, 100)
# W[[i]] <- Z.GD$w
# }
# Z.gtex <- Z.list
# W.gtex <- W
# set.seed(777)
# nsim <- 1e4
# Z.list <- list()
# for (i in seq(nsim)) {
# ## generate data
# counts <- t(apply(r, 1, sample, 2 * nsamp))
# design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
# summary <- count_to_summary(counts, design)
# Z <- summary$z
# Z.list[[i]] <- Z
# }
# z.gtex.rand.gene <- matrix(unlist(Z.list), byrow = TRUE, nrow = nsim)
z.gtex <- readRDS('../output/paper/simulation/Z.gtex.rds')
z.gtex.rand.gene <- readRDS('../output/paper/simulation/z.gtex.rand.gene.rds')
nsim <- length(z.gtex)
pz <- length(z.gtex[[1]])
# setEPS()
# postscript("../output/paper/ecdf_gtex.eps", width = 5, height = 5)
# png("../output/paper/ecdf_gtex.png", width = 5, height = 5, units = "in", res = 1200)
png("../output/paper/ecdf_gtex.png", width = 5, height = 5, units = "in", res = 300)
par(mar = c(4.5, 4.5, 2.5, 1))
plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z-scores", cex.lab = 2)
title(expression('(a): correlation kept'), cex.main = 2)
for (i in seq(nsim)) {
lines(ecdf(z.gtex[[i]]), lwd = 1, col = "grey75")
}
x.plot <- seq(-6, 6, by = 0.01)
y.plot.norm <- pnorm(x.plot)
upper.norm <- y.plot.norm + sqrt(log(2 / (1 / nsim)) / (2 * pz))
lower.norm <- y.plot.norm - sqrt(log(2 / (1 / nsim)) / (2 * pz))
lines(x.plot, y.plot.norm, lwd = 2, col = "blue")
lines(x.plot[upper.norm <= 1 & upper.norm >= 0], upper.norm[upper.norm <= 1 & upper.norm >= 0], lty = 3, col = "blue")
lines(x.plot[lower.norm <= 1 & lower.norm >= 0], lower.norm[lower.norm <= 1 & lower.norm >= 0], lty = 3, col = "blue")
legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[p]), expression('N(0,1)')), bty = "n", cex = 2)
dev.off()
quartz_off_screen
2
nsim <- nrow(z.gtex.rand.gene)
pz <- ncol(z.gtex.rand.gene)
# setEPS()
# postscript("../output/paper/ecdf_gtex_rand_gene.eps", width = 5, height = 5)
# png("../output/paper/ecdf_gtex_rand_gene.png", width = 5, height = 5, units = "in", res = 1200)
png("../output/paper/ecdf_gtex_rand_gene.png", width = 5, height = 5, units = "in", res = 300)
par(mar = c(4.5, 4.5, 2.5, 1))
plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z-scores", cex.lab = 2)
title(expression('(b): correlation removed'), cex.main = 2)
for (i in seq(nsim)) {
lines(ecdf(z.gtex.rand.gene[i, ]), lwd = 1, col = "grey75")
}
x.plot <- seq(-6, 6, by = 0.01)
y.plot.norm <- pnorm(x.plot)
upper.norm <- y.plot.norm + sqrt(log(2 / (1 / nsim)) / (2 * pz))
lower.norm <- y.plot.norm - sqrt(log(2 / (1 / nsim)) / (2 * pz))
lines(x.plot, y.plot.norm, lwd = 2, col = "blue")
lines(x.plot[upper.norm <= 1 & upper.norm >= 0], upper.norm[upper.norm <= 1 & upper.norm >= 0], lty = 3, col = "blue")
lines(x.plot[lower.norm <= 1 & lower.norm >= 0], lower.norm[lower.norm <= 1 & lower.norm >= 0], lty = 3, col = "blue")
legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[p]), expression('N(0,1)')), bty = "n", cex = 2)
dev.off()
quartz_off_screen
2
nsim <- nrow(z.gtex.rand.gene)
pz <- ncol(z.gtex.rand.gene)
# setEPS()
# postscript("../output/paper/ecdf_iid.eps", width = 5, height = 5)
# png("../output/paper/ecdf_iid.png", width = 5, height = 5, units = "in", res = 1200)
png("../output/paper/ecdf_iid.png", width = 5, height = 5, units = "in", res = 300)
par(mar = c(4.5, 4.5, 2.5, 1))
plot(0, type = "n", xlim = c(-5, 5), ylim = c(0, 1), ylab = "(Empirical) CDF", xlab = "z-scores", cex.lab = 2)
title(expression('(c): iid N(0,1) samples'), cex.main = 2)
for (i in seq(nsim)) {
lines(ecdf(rnorm(pz)), lwd = 1, col = "grey75")
}
x.plot <- seq(-6, 6, by = 0.01)
y.plot.norm <- pnorm(x.plot)
upper.norm <- y.plot.norm + sqrt(log(2 / (1 / nsim)) / (2 * pz))
lower.norm <- y.plot.norm - sqrt(log(2 / (1 / nsim)) / (2 * pz))
lines(x.plot, y.plot.norm, lwd = 2, col = "blue")
lines(x.plot[upper.norm <= 1 & upper.norm >= 0], upper.norm[upper.norm <= 1 & upper.norm >= 0], lty = 3, col = "blue")
lines(x.plot[lower.norm <= 1 & lower.norm >= 0], lower.norm[lower.norm <= 1 & lower.norm >= 0], lty = 3, col = "blue")
legend("bottomright", lwd = 1 : 2, col = c("grey75", "blue"), c(expression("F"[p]), expression('N(0,1)')), bty = "n", cex = 2)
dev.off()
quartz_off_screen
2
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS 10.14.1
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] workflowr_1.1.1 Rcpp_0.12.16 digest_0.6.15
[4] rprojroot_1.3-2 R.methodsS3_1.7.1 backports_1.1.2
[7] git2r_0.23.0 magrittr_1.5 evaluate_0.10.1
[10] stringi_1.2.2 whisker_0.3-2 R.oo_1.22.0
[13] R.utils_2.6.0 rmarkdown_1.9 tools_3.4.3
[16] stringr_1.3.1 yaml_2.1.19 compiler_3.4.3
[19] htmltools_0.3.6 knitr_1.20
This reproducible R Markdown analysis was created with workflowr 1.1.1