Last updated: 2018-12-14

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 73ed3b7

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_paper_fig1_cache/
        Ignored:    analysis/cash_paper_fig_avgecdf_cache/
        Ignored:    analysis/cash_paper_fig_deconv_cache/
        Ignored:    analysis/cash_paper_fig_leukemia_cache/
        Ignored:    analysis/cash_plots_2_cache/
        Ignored:    analysis/cash_plots_3_cache/
        Ignored:    analysis/cash_plots_4_cache/
        Ignored:    analysis/cash_plots_5_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
        Ignored:    output/paper/
    
    Unstaged changes:
        Modified:   analysis/cash_plots_2.rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    rmd c87b8d2 Lei Sun 2018-11-11 figures

Deconv

z.sel <- readRDS("../output/paper/simulation/z.sel.rds")
source('../code/count_to_summary.R')
source('../code/gdash_lik.R')
Loading required package: EQL
Loading required package: ttutils
Loading required package: SQUAREM
Loading required package: REBayes
Loading required package: Matrix
Warning: package 'Matrix' was built under R version 3.4.4
Loading required package: CVXR

Attaching package: 'CVXR'
The following object is masked from 'package:stats':

    power
Loading required package: PolynomF
Loading required package: Rmosek
Loading required package: ashr
library(ggplot2)
Warning: package 'ggplot2' was built under R version 3.4.4
CDF.KW <- function(h, interp = FALSE, eps = 0.001, bw = 0.7){
    #Wasserstein distance:  ||G-H||_W
    if(interp == "biweight"){
    yk = h$x
    for (j in 1:length(yk))
        yk[j] = sum(biweight(h$x[j], h$x, bw = bw)*h$y/sum(h$y))
    H <- cumsum(yk)
    H <- H/H[length(H)]
    }
    else {
    H <- cumsum(h$y)
    H <- H/H[length(H)]
    }
    return(H)
}
G <- function (t) {
  0.6 * pnorm(t, 0, 0) + 0.3 * pnorm(t, 0, 1) + 0.1 * pnorm(t, 0, 3)
}

set.seed(777)

theta <- sample(c(
  rnorm(6e3, 0, 0),
  rnorm(3e3, 0, 1),
  rnorm(1e3, 0, 3)
))

x.plot <- seq(-6, 6, by = 0.1)

G.plot <- G(x.plot)
r <- readRDS("../data/liver.rds")
nsamp <- 5
ngene <- 1e4
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
set.seed(777)
counts <- r[, sample(ncol(r), 2 * nsamp)]
design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
summary <- count_to_summary(counts, design)
s <- summary$sebetahat
s <- s / sqrt(mean(s^2))
noise.label <- c(
  'a',
  'b',
  'c',
  'd',
  'e'
)
deconv.list <- list()
for (i in 1 : 5) {
  if (i <= 4) {
    Z <- z.sel[i, ]
  } else {
    set.seed(777)
    Z <- rnorm(1e4)
  }
    X <- theta + s * Z
    z <- theta + Z

  ## Truth
  true.data <- cbind.data.frame(
    method = "True g",
    x = x.plot,
    cdfhat = G.plot
  )

  ## ashr
  fit.ashr <- ashr::ash(X, s, method = "fdr", mixcompdist = "normal")
  ashr.plot <- as.numeric(ashr::mixcdf(ashr::get_fitted_g(fit.ashr), x.plot))
  ashr.data <- cbind.data.frame(
    method = "ashr",
    x = x.plot,
    cdfhat = ashr.plot
  )
  
  ## cashr
  fit.cashr <- gdash(X, s)
  cashr.plot <- as.numeric(ashr::mixcdf(ashr::get_fitted_g(fit.cashr), x.plot))
  cashr.data <- cbind.data.frame(
    method = "cashr",
    x = x.plot,
    cdfhat = cashr.plot
  )

  ## deconvolveR
  fit.deconvolveR <- deconvolveR::deconv(tau = x.plot, X = z, family = "Normal", deltaAt = 0)
  deconvolveR.data <- cbind.data.frame(
    method = "deconvolveR",
    x = fit.deconvolveR$stats[, 1],
    cdfhat = fit.deconvolveR$stats[, 4]
  )
  
  ## Kiefer-Wolfowitz's NPMLE (1956)
  ## implemented by Koenker-Mizera-Gu's REBayes (2016)
  v = seq(-6.025, 6.025, by = 0.05)
  fit.REBayes <- REBayes::GLmix(x = X, v = v, sigma = s)
  REBayes.plot <- CDF.KW(fit.REBayes)
  REBayes.data <- cbind.data.frame(
    method = "REBayes",
    x = fit.REBayes$x,
    cdfhat = REBayes.plot
  )
  
  ## EbayesThresh
  fit.EbayesThresh <- EbayesThresh::ebayesthresh(X, sdev = s, verbose = TRUE, prior = "laplace", a = NA)
  EbayesThresh.plot <- (1 - fit.EbayesThresh$w) * (x.plot >= 0) + fit.EbayesThresh$w * rmutil::plaplace(x.plot, m = 0, s = 1 / fit.EbayesThresh$a)
  EbayesThresh.data <- cbind.data.frame(
    method = "EbayesThresh",
    x = x.plot,
    cdfhat = EbayesThresh.plot
  )
  
  deconv.list[[i]] <- cbind.data.frame(
    noise = noise.label[i],
    rbind.data.frame(
      true.data,
      EbayesThresh.data,
      REBayes.data,
      ashr.data,
      deconvolveR.data,
      cashr.data
    )
  )
}
Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value
Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol

Warning in REBayes::KWDual(A, rep(1, k), normalize(w), control = control): estimated mixing distribution has some negative values:
               consider reducing rtol
Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value

Warning in stats::nlm(f = loglik, p = aStart, gradtol = 1e-10, ...): NA/Inf
replaced by maximum positive value
deconv.ggdata <- do.call(rbind.data.frame, deconv.list)
noise.level <- c("(a)",
                  "(b)",
                  "(c)",
                  "(d)",
                  "(e)")
deconv.ggdata$noise <- plyr::mapvalues(deconv.ggdata$noise,
                                        from = noise.label,
                                        to = noise.level
                                        )
deconv.ggdata$noise <- factor(deconv.ggdata$noise,
                              levels = levels(deconv.ggdata$noise)[c(1, 2, 5, 3, 4)]
                              )
method.col <- c("black", scales::hue_pal()(5)[c(1, 3, 4, 2, 5)])
method.linetype <- rep(1, 6)
#method.linetype <- c(1, 2, 4, 5, 6)
## plotting
deconv.plot <- ggplot(data = deconv.ggdata, aes(x = x, y = cdfhat, col = method, linetype = method)) +
  geom_line(size = 1) +
  facet_wrap(~noise, nrow = 2) +
  xlim(-5, 5) +
  scale_linetype_manual(values = method.linetype
                        #, labels = method.name
                        #, guide = guide_legend(nrow = 1)
                        ) +
  scale_color_manual(values = method.col
                     #, labels = method.name
                     #, guide = guide_legend(nrow = 1)
                     ) +
  labs(y = expression(paste("CDF of (estimated) g"))
       #, x = expression(theta)
       #, title = expression(g == 0.6~delta[0] + 0.3~N(0, 1) + 0.1~N(0, 3^2))
       ) +
  theme(plot.title = element_text(size = 15, hjust = 0.5),
        axis.title.x = element_blank(),
        axis.text.x = element_text(size = 10),
        axis.title.y = element_text(size = 15),
        axis.text.y = element_text(size = 10),
        strip.text = element_text(size = 15),
        legend.position = c(0.85, 0.25),
        legend.title = element_blank(),
        #legend.background = element_rect(color = "grey"),
        legend.text = element_text(size = 15))

ggsave("../output/paper/deconv.pdf", height = 6, width = 10)
Warning: Removed 140 rows containing missing values (geom_path).
q <- 0.1
p.val.3 <- pnorm(-abs((theta + s * z.sel[3, ]) / s)) * 2
fit.BH.3 <- p.adjust(p.val.3, method = "BH")
sum(fit.BH.3 <= q)
[1] 3218
sum(theta[fit.BH.3 <= q] == 0)
[1] 1484
sum(theta[fit.BH.3 <= q] == 0) / sum(fit.BH.3 <= q)
[1] 0.461156
fit.qvalue.3 <- qvalue::qvalue(p.val.3)
fit.qvalue.3$pi0
[1] 0.3909627
sum(fit.qvalue.3$qvalues <= q)
[1] 5021
sum(theta[fit.qvalue.3$qvalues <= q] == 0)
[1] 2689
sum(theta[fit.qvalue.3$qvalues <= q] == 0) / sum(fit.qvalue.3$qvalues <= q)
[1] 0.5355507

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.14.1

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggplot2_3.1.0     ashr_2.2-7        Rmosek_8.0.69    
 [4] PolynomF_1.0-2    CVXR_0.95         REBayes_1.3      
 [7] Matrix_1.2-14     SQUAREM_2017.10-1 EQL_1.0-0        
[10] ttutils_1.0-1    

loaded via a namespace (and not attached):
 [1] qvalue_2.10.0     locfit_1.5-9.1    reshape2_1.4.3   
 [4] splines_3.4.3     lattice_0.20-35   colorspace_1.3-2 
 [7] htmltools_0.3.6   yaml_2.1.19       gmp_0.5-13.1     
[10] rlang_0.3.0.1     R.oo_1.22.0       pillar_1.2.2     
[13] glue_1.2.0        Rmpfr_0.7-0       withr_2.1.2      
[16] R.utils_2.6.0     bit64_0.9-7       bindrcpp_0.2.2   
[19] scs_1.1-1         foreach_1.4.4     plyr_1.8.4       
[22] bindr_0.1.1       stringr_1.3.1     munsell_0.4.3    
[25] gtable_0.2.0      workflowr_1.1.1   R.methodsS3_1.7.1
[28] codetools_0.2-15  evaluate_0.10.1   labeling_0.3     
[31] knitr_1.20        doParallel_1.0.11 pscl_1.5.2       
[34] parallel_3.4.3    Rcpp_0.12.16      edgeR_3.20.9     
[37] backports_1.1.2   scales_0.5.0      limma_3.34.9     
[40] truncnorm_1.0-8   bit_1.1-13        digest_0.6.15    
[43] stringi_1.2.2     dplyr_0.7.4       grid_3.4.3       
[46] rprojroot_1.3-2   ECOSolveR_0.4     tools_3.4.3      
[49] magrittr_1.5      lazyeval_0.2.1    tibble_1.4.2     
[52] whisker_0.3-2     pkgconfig_2.0.1   MASS_7.3-50      
[55] assertthat_0.2.0  rmarkdown_1.9     iterators_1.0.9  
[58] R6_2.2.2          git2r_0.23.0      compiler_3.4.3   

This reproducible R Markdown analysis was created with workflowr 1.1.1