Last updated: 2018-05-15
workflowr checks: (Click a bullet for more information) ✔ R Markdown file: up-to-date
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
✔ Environment: empty
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
✔ Seed:
set.seed(12345)
The command set.seed(12345)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
✔ Session information: recorded
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
✔ Repository version: 388e65e
wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: analysis/BH_robustness_cache/
Ignored: analysis/FDR_Null_cache/
Ignored: analysis/FDR_null_betahat_cache/
Ignored: analysis/Rmosek_cache/
Ignored: analysis/StepDown_cache/
Ignored: analysis/alternative2_cache/
Ignored: analysis/alternative_cache/
Ignored: analysis/ash_gd_cache/
Ignored: analysis/average_cor_gtex_2_cache/
Ignored: analysis/average_cor_gtex_cache/
Ignored: analysis/brca_cache/
Ignored: analysis/cash_deconv_cache/
Ignored: analysis/cash_fdr_1_cache/
Ignored: analysis/cash_fdr_2_cache/
Ignored: analysis/cash_fdr_3_cache/
Ignored: analysis/cash_fdr_4_cache/
Ignored: analysis/cash_fdr_5_cache/
Ignored: analysis/cash_fdr_6_cache/
Ignored: analysis/cash_plots_cache/
Ignored: analysis/cash_sim_1_cache/
Ignored: analysis/cash_sim_2_cache/
Ignored: analysis/cash_sim_3_cache/
Ignored: analysis/cash_sim_4_cache/
Ignored: analysis/cash_sim_5_cache/
Ignored: analysis/cash_sim_6_cache/
Ignored: analysis/cash_sim_7_cache/
Ignored: analysis/correlated_z_2_cache/
Ignored: analysis/correlated_z_3_cache/
Ignored: analysis/correlated_z_cache/
Ignored: analysis/create_null_cache/
Ignored: analysis/cutoff_null_cache/
Ignored: analysis/design_matrix_2_cache/
Ignored: analysis/design_matrix_cache/
Ignored: analysis/diagnostic_ash_cache/
Ignored: analysis/diagnostic_correlated_z_2_cache/
Ignored: analysis/diagnostic_correlated_z_3_cache/
Ignored: analysis/diagnostic_correlated_z_cache/
Ignored: analysis/diagnostic_plot_2_cache/
Ignored: analysis/diagnostic_plot_cache/
Ignored: analysis/efron_leukemia_cache/
Ignored: analysis/fitting_normal_cache/
Ignored: analysis/gaussian_derivatives_2_cache/
Ignored: analysis/gaussian_derivatives_3_cache/
Ignored: analysis/gaussian_derivatives_4_cache/
Ignored: analysis/gaussian_derivatives_5_cache/
Ignored: analysis/gaussian_derivatives_cache/
Ignored: analysis/gd-ash_cache/
Ignored: analysis/gd_delta_cache/
Ignored: analysis/gd_lik_2_cache/
Ignored: analysis/gd_lik_cache/
Ignored: analysis/gd_w_cache/
Ignored: analysis/knockoff_10_cache/
Ignored: analysis/knockoff_2_cache/
Ignored: analysis/knockoff_3_cache/
Ignored: analysis/knockoff_4_cache/
Ignored: analysis/knockoff_5_cache/
Ignored: analysis/knockoff_6_cache/
Ignored: analysis/knockoff_7_cache/
Ignored: analysis/knockoff_8_cache/
Ignored: analysis/knockoff_9_cache/
Ignored: analysis/knockoff_cache/
Ignored: analysis/knockoff_var_cache/
Ignored: analysis/marginal_z_alternative_cache/
Ignored: analysis/marginal_z_cache/
Ignored: analysis/mosek_reg_2_cache/
Ignored: analysis/mosek_reg_4_cache/
Ignored: analysis/mosek_reg_5_cache/
Ignored: analysis/mosek_reg_6_cache/
Ignored: analysis/mosek_reg_cache/
Ignored: analysis/pihat0_null_cache/
Ignored: analysis/plot_diagnostic_cache/
Ignored: analysis/poster_obayes17_cache/
Ignored: analysis/real_data_simulation_2_cache/
Ignored: analysis/real_data_simulation_3_cache/
Ignored: analysis/real_data_simulation_4_cache/
Ignored: analysis/real_data_simulation_5_cache/
Ignored: analysis/real_data_simulation_cache/
Ignored: analysis/rmosek_primal_dual_2_cache/
Ignored: analysis/rmosek_primal_dual_cache/
Ignored: analysis/seqgendiff_cache/
Ignored: analysis/simulated_correlated_null_2_cache/
Ignored: analysis/simulated_correlated_null_3_cache/
Ignored: analysis/simulated_correlated_null_cache/
Ignored: analysis/simulation_real_se_2_cache/
Ignored: analysis/simulation_real_se_cache/
Ignored: analysis/smemo_2_cache/
Ignored: data/LSI/
Ignored: docs/.DS_Store
Ignored: docs/figure/.DS_Store
Ignored: output/fig/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | ddf9062 | LSun | 2018-05-12 | Update to 1.0 |
rmd | cc0ab83 | Lei Sun | 2018-05-11 | update |
html | 0f36d99 | LSun | 2017-12-21 | Build site. |
html | 853a484 | LSun | 2017-11-07 | Build site. |
html | d85c351 | LSun | 2017-07-03 | Build site. |
rmd | 020da62 | LSun | 2017-04-06 | SNR |
html | 020da62 | LSun | 2017-04-06 | SNR |
rmd | 0f49e8a | LSun | 2017-03-31 | alternative simulation |
html | 0f49e8a | LSun | 2017-03-31 | alternative simulation |
We’ve shown that independent \(N(0, 2)\) samples can be fitted by Gaussian derivatives relatively reasonably. As previously noted, that is an SNR = 0 case. Now we want to show how Gaussian derivatives work on cases with increasing SNRs.
Here SNR in db is defined as \(10\log_{10}\left(\frac{\sigma_\beta^2}{\sigma_e^2}\right)\), where in our setting \(\sigma_e^2 = 1\), \(\sigma_z^2 = \sigma_\beta^2 + \sigma_e^2\).
library(ashr)
source("../code/ecdfz.R")
n = 1e4
m = 5
SNR.min = 1
SNR.max = 10
res = list()
set.seed(777)
for (SNR in SNR.min : SNR.max) {
z.sd = sqrt(10^(SNR / 10) + 1)
zmat = matrix(rnorm(n * m, 0, sd = z.sd), nrow = m, byrow = TRUE)
res[[SNR]] = list()
for (i in 1:m) {
z = zmat[i, ]
p = (1 - pnorm(abs(z))) * 2
bh.fd = sum(p.adjust(p, method = "BH") <= 0.05)
pihat0.ash = get_pi0(ash(z, 1, method = "fdr"))
ecdfz.fit = ecdfz.optimal(z, firstk = TRUE)
res[[SNR]][[i]] = list(z.sd = z.sd, z = z, p = p, bh.fd = bh.fd, pihat0.ash = pihat0.ash, ecdfz.fit = ecdfz.fit)
}
}
## SNR = 1 ; sigma_z = 1.502972 ; True Distribution: N ( 0 , 2.258925 ) .
Example 1 :
SNR = 1 ;
True Distribution: N ( 0 , 2.258925 ) ;
Number of Discoveries: 428 ;
pihat0 = 0.2709664 ;
Log-likelihood by True Distribution N ( 0, 2.258925 ) : -18313.33 ;
Log-likelihood by Gaussian Derivatives with K = 8 : -18318.05 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 8 : 4.720698 ;
Normalized Weights of Gaussian Derivatives with K = 8 :
1 : -0.0138740386442539 ; 2 : 0.892281011245653 ; 3 : -0.028567009630833 ; 4 : 0.94253139322481 ; 5 : -0.0113795882900605 ; 6 : 0.809509538283857 ; 7 : 0.0229744434384983 ; 8 : 0.358299621647272 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18348.81 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 7 : 35.47763 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0149703048359138 ; 2 : 0.866692877952966 ; 3 : -0.0301089228458965 ; 4 : 0.767046792878629 ; 5 : -0.0110444822556435 ; 6 : 0.380758391289584 ; 7 : 0.0254012390742264 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 1 ;
True Distribution: N ( 0 , 2.258925 ) ;
Number of Discoveries: 367 ;
pihat0 = 0.2655976 ;
Log-likelihood by True Distribution N ( 0, 2.258925 ) : -18229.62 ;
Log-likelihood by Gaussian Derivatives with K = 9 : -18229.93 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 9 : 0.3054308 ;
Normalized Weights of Gaussian Derivatives with K = 9 :
1 : 0.0109595744146466 ; 2 : 0.872494511525152 ; 3 : 0.0166435212643833 ; 4 : 0.834304921649212 ; 5 : -0.0172341620303621 ; 6 : 0.632087532212813 ; 7 : 0.00856994470962663 ; 8 : 0.246676236280596 ; 9 : 0.00960621718545015 ;
Log-likelihood by Gaussian Derivatives with K = 8 : -18230.02 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 8 : 0.392468 ;
Normalized Weights of Gaussian Derivatives with K = 8 :
1 : 0.0108635572606931 ; 2 : 0.872487253460917 ; 3 : 0.0151674590792571 ; 4 : 0.834395095058209 ; 5 : -0.0241729589279682 ; 6 : 0.632309611264995 ; 7 : -0.00494246114453377 ; 8 : 0.246809387644906 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 1 ;
True Distribution: N ( 0 , 2.258925 ) ;
Number of Discoveries: 414 ;
pihat0 = 0.3111735 ;
Log-likelihood by True Distribution N ( 0, 2.258925 ) : -18236.37 ;
Log-likelihood by Gaussian Derivatives with K = 8 : -18234.66 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 8 : -1.715201 ;
Normalized Weights of Gaussian Derivatives with K = 8 :
1 : -0.000572287615513397 ; 2 : 0.873484974327661 ; 3 : -0.0126862795911764 ; 4 : 0.891280588085513 ; 5 : 0.0448702002588981 ; 6 : 0.699292716557123 ; 7 : 0.0739176259383721 ; 8 : 0.269359515626305 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18253.01 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 7 : 16.64117 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.00223200243361907 ; 2 : 0.853439452681122 ; 3 : -0.0206175539095362 ; 4 : 0.754777072315358 ; 5 : 0.0300355184347576 ; 6 : 0.37248254074971 ; 7 : 0.0629162247280905 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 1 ;
True Distribution: N ( 0 , 2.258925 ) ;
Number of Discoveries: 279 ;
pihat0 = 0.2883564 ;
Log-likelihood by True Distribution N ( 0, 2.258925 ) : -18180.99 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18211.86 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 7 : 30.87149 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.00253181066300101 ; 2 : 0.835740744054015 ; 3 : -0.00828147519737005 ; 4 : 0.658405272063464 ; 5 : -0.0056181233262792 ; 6 : 0.279018029700389 ; 7 : 0.031205122505456 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -18217.69 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 6 : 36.69734 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.00342033433603602 ; 2 : 0.835461789922238 ; 3 : -0.0179069743937475 ; 4 : 0.658486690747026 ; 5 : -0.0365069966123492 ; 6 : 0.279269504553461 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 1 ;
True Distribution: N ( 0 , 2.258925 ) ;
Number of Discoveries: 408 ;
pihat0 = 0.3458893 ;
Log-likelihood by True Distribution N ( 0, 2.258925 ) : -18211.51 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18217.85 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 7 : 6.346104 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0147557356837701 ; 2 : 0.847148023105142 ; 3 : -0.0300837913631588 ; 4 : 0.754691670792804 ; 5 : -0.0659841393438177 ; 6 : 0.381126272820956 ; 7 : -0.0839138576127453 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -18235.4 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.258925 ) and Fitted Gaussian Derivatives with K = 6 : 23.89227 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.010980181886604 ; 2 : 0.844912871994996 ; 3 : 0.00150880666789093 ; 4 : 0.75052104096923 ; 5 : 0.0233674006241364 ; 6 : 0.377820750277234 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 2 ; sigma_z = 1.60776 ; True Distribution: N ( 0 , 2.584893 ) .
Example 1 :
SNR = 2 ;
True Distribution: N ( 0 , 2.584893 ) ;
Number of Discoveries: 628 ;
pihat0 = 0.2014281 ;
Log-likelihood by True Distribution N ( 0, 2.584893 ) : -18883.1 ;
Log-likelihood by Gaussian Derivatives with K = 8 : -18848.21 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 8 : -34.88926 ;
Normalized Weights of Gaussian Derivatives with K = 8 :
1 : 0.0136147919601149 ; 2 : 1.08274316136917 ; 3 : 0.00337518683255761 ; 4 : 1.23442521358308 ; 5 : -0.0312064980495082 ; 6 : 1.12436528722487 ; 7 : -0.00506440306881227 ; 8 : 0.563409031383621 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18958.36 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 7 : 75.26143 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : 0.0119440041009122 ; 2 : 1.03844441321769 ; 3 : 0.000649045654352769 ; 4 : 0.937019524556236 ; 5 : -0.0326509618902091 ; 6 : 0.419393818733931 ; 7 : -0.00443309470441701 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 2 ;
True Distribution: N ( 0 , 2.584893 ) ;
Number of Discoveries: 700 ;
pihat0 = 0.2714964 ;
Log-likelihood by True Distribution N ( 0, 2.584893 ) : -18940.46 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -19007.95 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 7 : 67.48755 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : 0.0164681394830972 ; 2 : 1.05636276082517 ; 3 : 0.0393323297755097 ; 4 : 1.05810403869031 ; 5 : 0.038214655867539 ; 6 : 0.528683713570606 ; 7 : -0.00290938755991068 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19007.97 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 6 : 67.50821 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.016590918892684 ; 2 : 1.05638106370673 ; 3 : 0.0404683327631348 ; 4 : 1.05816543499172 ; 5 : 0.04141481562775 ; 6 : 0.528741840837135 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 2 ;
True Distribution: N ( 0 , 2.584893 ) ;
Number of Discoveries: 727 ;
pihat0 = 0.3134389 ;
Log-likelihood by True Distribution N ( 0, 2.584893 ) : -18986.24 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19025.86 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 6 : 39.6199 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.034411297708113 ; 2 : 1.0798301969158 ; 3 : 0.0387605138305727 ; 4 : 1.09993225357172 ; 5 : 0.0189586458609482 ; 6 : 0.549984526433354 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -19213.48 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 5 : 227.2411 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0305257775976203 ; 2 : 0.961133806275765 ; 3 : 0.0266825322421371 ; 4 : 0.611958147781872 ; 5 : 0.0048237348092036 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 2 ;
True Distribution: N ( 0 , 2.584893 ) ;
Number of Discoveries: 754 ;
pihat0 = 0.2578183 ;
Log-likelihood by True Distribution N ( 0, 2.584893 ) : -18986.44 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -19023.87 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 7 : 37.42848 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0120449529453214 ; 2 : 1.08764707514979 ; 3 : -0.0272343286937293 ; 4 : 1.07640403751387 ; 5 : -0.0277378881145104 ; 6 : 0.530056762448694 ; 7 : 0.00998347331685409 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19024.22 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 6 : 37.77873 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.012497468175113 ; 2 : 1.08756111671169 ; 3 : -0.0313106614773657 ; 4 : 1.07622274974305 ; 5 : -0.0389318140481279 ; 6 : 0.529903478383342 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 2 ;
True Distribution: N ( 0 , 2.584893 ) ;
Number of Discoveries: 684 ;
pihat0 = 0.2336033 ;
Log-likelihood by True Distribution N ( 0, 2.584893 ) : -18910.99 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -18946.39 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 7 : 35.40402 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0128409389534885 ; 2 : 1.05565637812346 ; 3 : -0.0698680521778894 ; 4 : 1.00753208077044 ; 5 : -0.0136057563515818 ; 6 : 0.530753658180936 ; 7 : 0.0276611410399095 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -18956.21 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.584893 ) and Fitted Gaussian Derivatives with K = 6 : 45.22527 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0141250515327056 ; 2 : 1.05415473078761 ; 3 : -0.0806873609624797 ; 4 : 1.00529296660644 ; 5 : -0.0440799147371776 ; 6 : 0.529284900907757 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 3 ; sigma_z = 1.730683 ; True Distribution: N ( 0 , 2.995262 ) .
Example 1 :
SNR = 3 ;
True Distribution: N ( 0 , 2.995262 ) ;
Number of Discoveries: 1137 ;
pihat0 = 0.2002261 ;
Log-likelihood by True Distribution N ( 0, 2.995262 ) : -19749.88 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19874.22 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 6 : 124.3455 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0288992302921886 ; 2 : 1.30366812740725 ; 3 : 0.0628160596849958 ; 4 : 1.41969523193942 ; 5 : 0.0612663914524723 ; 6 : 0.736859567348341 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -20225.09 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 5 : 475.2066 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0238158009072628 ; 2 : 1.14465614448965 ; 3 : 0.0384889963108962 ; 4 : 0.757296526468208 ; 5 : 0.035015557729069 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 3 ;
True Distribution: N ( 0 , 2.995262 ) ;
Number of Discoveries: 1053 ;
pihat0 = 0.236766 ;
Log-likelihood by True Distribution N ( 0, 2.995262 ) : -19681.48 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19815.82 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 6 : 134.3427 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00318211711794664 ; 2 : 1.30247550307223 ; 3 : -0.0172188218881736 ; 4 : 1.42702661114986 ; 5 : -0.0363262272592029 ; 6 : 0.717683859109124 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -20085.13 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 5 : 403.6479 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0104814304575098 ; 2 : 1.13675011442731 ; 3 : 0.00188184844839905 ; 4 : 0.756404381575781 ; 5 : -0.0199154232069253 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 3 ;
True Distribution: N ( 0 , 2.995262 ) ;
Number of Discoveries: 1125 ;
pihat0 = 0.2183353 ;
Log-likelihood by True Distribution N ( 0, 2.995262 ) : -19799.13 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -19974.25 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 7 : 175.1193 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0369699199255488 ; 2 : 1.31265025712611 ; 3 : -0.107576867905454 ; 4 : 1.45773811185881 ; 5 : -0.121632069227899 ; 6 : 0.783548181004518 ; 7 : -0.0322240334306016 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -20032.16 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 6 : 233.0241 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0349918322709436 ; 2 : 1.30244269821314 ; 3 : -0.0928096088731791 ; 4 : 1.43703104429066 ; 5 : -0.0836064902501311 ; 6 : 0.768336876325314 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 3 ;
True Distribution: N ( 0 , 2.995262 ) ;
Number of Discoveries: 1015 ;
pihat0 = 0.2005916 ;
Log-likelihood by True Distribution N ( 0, 2.995262 ) : -19563.37 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19717.58 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 6 : 154.205 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0142014676711954 ; 2 : 1.23085121924937 ; 3 : 0.0193924773128272 ; 4 : 1.33650382371204 ; 5 : 0.00773080730718023 ; 6 : 0.714669370482247 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -20026.82 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 5 : 463.4474 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0138072992790593 ; 2 : 1.08230318475708 ; 3 : 0.0112953947087835 ; 4 : 0.70028252055515 ; 5 : -0.00401828618141428 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 3 ;
True Distribution: N ( 0 , 2.995262 ) ;
Number of Discoveries: 1116 ;
pihat0 = 0.2059135 ;
Log-likelihood by True Distribution N ( 0, 2.995262 ) : -19694.25 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -19875.35 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 6 : 181.0977 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0140242957481269 ; 2 : 1.27383551876828 ; 3 : -0.0464574751003468 ; 4 : 1.39777208974153 ; 5 : -0.0310039225932993 ; 6 : 0.75869513057903 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -20195.4 ;
Log-likelihood Ratio between True Distribution N ( 0, 2.995262 ) and Fitted Gaussian Derivatives with K = 5 : 501.1484 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0132809857324255 ; 2 : 1.11756833715367 ; 3 : -0.0383825968226916 ; 4 : 0.718184548621535 ; 5 : -0.0246121563432862 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 4 ; sigma_z = 1.874003 ; True Distribution: N ( 0 , 3.511886 ) .
Example 1 :
SNR = 4 ;
True Distribution: N ( 0 , 3.511886 ) ;
Number of Discoveries: 1612 ;
pihat0 = 0.2349198 ;
Log-likelihood by True Distribution N ( 0, 3.511886 ) : -20505.62 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -20838.3 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 7 : 332.6796 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : 0.00263960278498244 ; 2 : 1.53936288484481 ; 3 : -0.000253103340590059 ; 4 : 1.90098025064903 ; 5 : 0.0266329163091332 ; 6 : 1.02003551948117 ; 7 : 0.024303389682097 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -20900.37 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 6 : 394.7513 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00155462847886588 ; 2 : 1.53004347413158 ; 3 : -0.0109051295788474 ; 4 : 1.8821764856015 ; 5 : -0.00189158567619316 ; 6 : 1.00635770850968 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 4 ;
True Distribution: N ( 0 , 3.511886 ) ;
Number of Discoveries: 1579 ;
pihat0 = 0.1702099 ;
Log-likelihood by True Distribution N ( 0, 3.511886 ) : -20538.23 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -20874.76 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 6 : 336.5326 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00714737291666616 ; 2 : 1.54777588924115 ; 3 : 0.0907515403200786 ; 4 : 1.86599937944303 ; 5 : 0.0724552423429854 ; 6 : 1.01923589785132 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -21468.18 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 5 : 929.9497 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00233712727950881 ; 2 : 1.30898534778199 ; 3 : 0.0614434451312987 ; 4 : 0.910461862499954 ; 5 : 0.05447641272924 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 4 ;
True Distribution: N ( 0 , 3.511886 ) ;
Number of Discoveries: 1537 ;
pihat0 = 0.207689 ;
Log-likelihood by True Distribution N ( 0, 3.511886 ) : -20375.11 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -20696.27 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 6 : 321.1552 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0129177627131297 ; 2 : 1.51027853149931 ; 3 : -0.0621604270315439 ; 4 : 1.7839515165522 ; 5 : -0.0463150827204791 ; 6 : 0.950489396221004 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -21160.44 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 5 : 785.3305 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0167322527670701 ; 2 : 1.28474315587364 ; 3 : -0.0507776149038532 ; 4 : 0.886307772175458 ; 5 : -0.0475668505725079 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 4 ;
True Distribution: N ( 0 , 3.511886 ) ;
Number of Discoveries: 1661 ;
pihat0 = 0.2081909 ;
Log-likelihood by True Distribution N ( 0, 3.511886 ) : -20619.85 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -21024.68 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 6 : 404.824 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.015109039889223 ; 2 : 1.58437283625333 ; 3 : 0.0261382021780695 ; 4 : 1.91545171554349 ; 5 : -0.00140914849247964 ; 6 : 1.00554828868042 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -21549.2 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 5 : 929.3471 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0216915779717695 ; 2 : 1.3390792645327 ; 3 : 0.0283549196023475 ; 4 : 0.961246767734933 ; 5 : -0.00869438265477574 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 4 ;
True Distribution: N ( 0 , 3.511886 ) ;
Number of Discoveries: 1539 ;
pihat0 = 0.1875351 ;
Log-likelihood by True Distribution N ( 0, 3.511886 ) : -20479.14 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -20822.78 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 6 : 343.6364 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0353091829171418 ; 2 : 1.5488252807078 ; 3 : 0.0815738367447848 ; 4 : 1.84626451120107 ; 5 : 0.0650913631373509 ; 6 : 0.984109496544227 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -21314.74 ;
Log-likelihood Ratio between True Distribution N ( 0, 3.511886 ) and Fitted Gaussian Derivatives with K = 5 : 835.5978 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0275284735740842 ; 2 : 1.31280586018846 ; 3 : 0.0434390282435354 ; 4 : 0.909048058129576 ; 5 : 0.0225535285052623 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 5 ; sigma_z = 2.040166 ; True Distribution: N ( 0 , 4.162278 ) .
Example 1 :
SNR = 5 ;
True Distribution: N ( 0 , 4.162278 ) ;
Number of Discoveries: 2181 ;
pihat0 = 0.1471061 ;
Log-likelihood by True Distribution N ( 0, 4.162278 ) : -21456.54 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -22273.92 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 7 : 817.3892 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0277287247172747 ; 2 : 1.83729841608932 ; 3 : -0.0194061221798388 ; 4 : 2.38721144713735 ; 5 : 0.0669893025894355 ; 6 : 1.33833255575326 ; 7 : 0.0601856133000998 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -22316.92 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 6 : 860.386 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.031071765701026 ; 2 : 1.83200238307822 ; 3 : -0.0482607640760006 ; 4 : 2.3761386840482 ; 5 : -0.00660665954240478 ; 6 : 1.33000254948579 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 5 ;
True Distribution: N ( 0 , 4.162278 ) ;
Number of Discoveries: 2132 ;
pihat0 = 0.1710206 ;
Log-likelihood by True Distribution N ( 0, 4.162278 ) : -21360.19 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -22056.24 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 7 : 696.0522 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : -0.0302692305952895 ; 2 : 1.81095755971405 ; 3 : -0.123945606236119 ; 4 : 2.3625934945064 ; 5 : -0.16061012528612 ; 6 : 1.33954600169702 ; 7 : -0.0943016327906944 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -22150.52 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 6 : 790.3308 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0248164580551722 ; 2 : 1.79997755220376 ; 3 : -0.0786044913573935 ; 4 : 2.33958958474172 ; 5 : -0.0453793295236274 ; 6 : 1.32245550790188 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 5 ;
True Distribution: N ( 0 , 4.162278 ) ;
Number of Discoveries: 2022 ;
pihat0 = 0.1179668 ;
Log-likelihood by True Distribution N ( 0, 4.162278 ) : -21300.12 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -22024.14 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 6 : 724.023 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.000731727484443342 ; 2 : 1.77628066195772 ; 3 : -0.0183224310340538 ; 4 : 2.2544384353018 ; 5 : -0.0421725370426179 ; 6 : 1.25470467115244 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -22930.59 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 5 : 1630.466 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0109224327550832 ; 2 : 1.47160826685493 ; 3 : 0.0151877858144352 ; 4 : 1.05250752843448 ; 5 : -0.0104184675847151 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 5 ;
True Distribution: N ( 0 , 4.162278 ) ;
Number of Discoveries: 1955 ;
pihat0 = 0.1390593 ;
Log-likelihood by True Distribution N ( 0, 4.162278 ) : -21222.54 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -21916.99 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 6 : 694.4488 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.01082394354273 ; 2 : 1.76860322355297 ; 3 : -0.0212147026883038 ; 4 : 2.21317753779356 ; 5 : -0.0257310173508894 ; 6 : 1.20281481409197 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -22712.84 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 5 : 1490.302 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00519465956622556 ; 2 : 1.4699555974489 ; 3 : 0.000543992287838269 ; 4 : 1.04946806984471 ; 5 : -0.00321855532758913 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 5 ;
True Distribution: N ( 0 , 4.162278 ) ;
Number of Discoveries: 2084 ;
pihat0 = 0.1694246 ;
Log-likelihood by True Distribution N ( 0, 4.162278 ) : -21326.66 ;
Log-likelihood by Gaussian Derivatives with K = 7 : -22026.65 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 7 : 699.9825 ;
Normalized Weights of Gaussian Derivatives with K = 7 :
1 : 0.034611676260936 ; 2 : 1.8019192495016 ; 3 : 0.0702645299158879 ; 4 : 2.33324813754215 ; 5 : 0.0632684084249024 ; 6 : 1.30020235325766 ; 7 : 0.014351484665824 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -22108.35 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.162278 ) and Fitted Gaussian Derivatives with K = 6 : 781.6903 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0335621187013486 ; 2 : 1.79225356399466 ; 3 : 0.0627592982733057 ; 4 : 2.3134090885158 ; 5 : 0.0451433691894302 ; 6 : 1.28552689070843 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 6 ; sigma_z = 2.231831 ; True Distribution: N ( 0 , 4.981072 ) .
Example 1 :
SNR = 6 ;
True Distribution: N ( 0 , 4.981072 ) ;
Number of Discoveries: 2683 ;
pihat0 = 0.1414556 ;
Log-likelihood by True Distribution N ( 0, 4.981072 ) : -22239.22 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -23730.07 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 6 : 1490.851 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0296803542499545 ; 2 : 2.07614733637123 ; 3 : 0.0703932598614685 ; 4 : 2.85025980724701 ; 5 : 0.0596934102982105 ; 6 : 1.60294149075837 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -25033.34 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 5 : 2794.116 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.00787281872235832 ; 2 : 1.6598745095546 ; 3 : 0.0327468776020723 ; 4 : 1.26207912428607 ; 5 : 0.0409404655346192 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 6 ;
True Distribution: N ( 0 , 4.981072 ) ;
Number of Discoveries: 2782 ;
pihat0 = 0.14379 ;
Log-likelihood by True Distribution N ( 0, 4.981072 ) : -22307.73 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -23759.97 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 6 : 1452.239 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00968653765934509 ; 2 : 2.11764080114054 ; 3 : 0.00614427739560328 ; 4 : 2.91545496587689 ; 5 : -0.0290001943355776 ; 6 : 1.65319096959502 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -25154.82 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 5 : 2847.087 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0128279354380785 ; 2 : 1.68364560918076 ; 3 : 0.0160969375686653 ; 4 : 1.2704432431804 ; 5 : -0.0126453926481678 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 6 ;
True Distribution: N ( 0 , 4.981072 ) ;
Number of Discoveries: 2649 ;
pihat0 = 0.1090815 ;
Log-likelihood by True Distribution N ( 0, 4.981072 ) : -22258.28 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -23529.81 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 6 : 1271.533 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0011428411494417 ; 2 : 1.95662124625593 ; 3 : -0.0224171808790388 ; 4 : 2.49991702360509 ; 5 : -0.00366220135857955 ; 6 : 1.36757833770512 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -25155.11 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 5 : 2896.828 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00385085258044298 ; 2 : 1.67314628611184 ; 3 : -0.0169085908314758 ; 4 : 1.24156513591502 ; 5 : 0.00800909685413182 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 6 ;
True Distribution: N ( 0 , 4.981072 ) ;
Number of Discoveries: 2611 ;
pihat0 = 0.1362864 ;
Log-likelihood by True Distribution N ( 0, 4.981072 ) : -22094.39 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -24651.41 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 5 : 2557.016 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0207456250918557 ; 2 : 1.64776347409511 ; 3 : 0.0408372151048951 ; 4 : 1.23516153632877 ; 5 : -0.00209962997563955 ;
Log-likelihood by Gaussian Derivatives with K = 4 : -24654.08 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 4 : 2559.692 ;
Normalized Weights of Gaussian Derivatives with K = 4 :
1 : 0.0211027886566392 ; 2 : 1.64814189178002 ; 3 : 0.0425671978787183 ; 4 : 1.2356285923639 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 6 ;
True Distribution: N ( 0 , 4.981072 ) ;
Number of Discoveries: 2649 ;
pihat0 = 0.1092557 ;
Log-likelihood by True Distribution N ( 0, 4.981072 ) : -22215.9 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -23754.87 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 6 : 1538.97 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0116366532166927 ; 2 : 2.06025482639985 ; 3 : -0.011516485335873 ; 4 : 2.79783722718127 ; 5 : -0.0163523967952556 ; 6 : 1.58041329223154 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -25071.74 ;
Log-likelihood Ratio between True Distribution N ( 0, 4.981072 ) and Fitted Gaussian Derivatives with K = 5 : 2855.842 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0167193129430813 ; 2 : 1.65088940488345 ; 3 : 0.0112739770964507 ; 4 : 1.23275554575975 ; 5 : 0.000220131488046469 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 7 ; sigma_z = 2.451912 ; True Distribution: N ( 0 , 6.011872 ) .
Example 1 :
SNR = 7 ;
True Distribution: N ( 0 , 6.011872 ) ;
Number of Discoveries: 3288 ;
pihat0 = 0.08928676 ;
Log-likelihood by True Distribution N ( 0, 6.011872 ) : -23260.7 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -26298.95 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 6 : 3038.251 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0183005878150952 ; 2 : 2.34484205485819 ; 3 : -0.0298238324987321 ; 4 : 3.36367097754695 ; 5 : -0.0263635043049669 ; 6 : 1.95573111007512 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -28345.43 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 5 : 5084.722 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0207339186941601 ; 2 : 1.82651582430218 ; 3 : -0.0233716676525867 ; 4 : 1.40075833244072 ; 5 : -0.016455641490395 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 7 ;
True Distribution: N ( 0 , 6.011872 ) ;
Number of Discoveries: 3333 ;
pihat0 = 0.09588348 ;
Log-likelihood by True Distribution N ( 0, 6.011872 ) : -23213.25 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -25965.71 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 6 : 2752.465 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0157497749468068 ; 2 : 2.29522111448563 ; 3 : -0.0504594888083231 ; 4 : 3.2716206983689 ; 5 : -0.0434371740666126 ; 6 : 1.88971138582365 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -28063.64 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 5 : 4850.391 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00125856771424838 ; 2 : 1.82848294685367 ; 3 : -0.00862514412274113 ; 4 : 1.41531531673069 ; 5 : -0.0113003931850965 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 7 ;
True Distribution: N ( 0 , 6.011872 ) ;
Number of Discoveries: 3176 ;
pihat0 = 0.1297791 ;
Log-likelihood by True Distribution N ( 0, 6.011872 ) : -23073.36 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -25730.54 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 6 : 2657.185 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00547516103293227 ; 2 : 2.24562303322161 ; 3 : 0.0493165965305574 ; 4 : 3.16335068855266 ; 5 : 0.0400002165361984 ; 6 : 1.7738638592201 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -27667.42 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 5 : 4594.065 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00781400536548428 ; 2 : 1.78824512444825 ; 3 : 0.0305422935251163 ; 4 : 1.41139215177903 ; 5 : 0.0299925365790375 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 7 ;
True Distribution: N ( 0 , 6.011872 ) ;
Number of Discoveries: 3194 ;
pihat0 = 0.1000719 ;
Log-likelihood by True Distribution N ( 0, 6.011872 ) : -23103.79 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -25884.9 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 6 : 2781.118 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.019831930425411 ; 2 : 2.28723915997433 ; 3 : 0.0334406444701634 ; 4 : 3.25360120421447 ; 5 : 0.0113572300675825 ; 6 : 1.87558158578094 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -27793.23 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 5 : 4689.439 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.021214778576848 ; 2 : 1.80481775316164 ; 3 : 0.0330643574613194 ; 4 : 1.38231477760038 ; 5 : 0.00396533588188546 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 7 ;
True Distribution: N ( 0 , 6.011872 ) ;
Number of Discoveries: 3235 ;
pihat0 = 0.1134862 ;
Log-likelihood by True Distribution N ( 0, 6.011872 ) : -23044.41 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -25484.16 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 6 : 2439.756 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00715356253823022 ; 2 : 2.27436645331824 ; 3 : 0.00105952221137104 ; 4 : 3.20013131956896 ; 5 : 0.00118057804423982 ; 6 : 1.78681955956309 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -27372.31 ;
Log-likelihood Ratio between True Distribution N ( 0, 6.011872 ) and Fitted Gaussian Derivatives with K = 5 : 4327.9 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0105083874094317 ; 2 : 1.8119786043687 ; 3 : 0.0202691225905926 ; 4 : 1.41690219054158 ; 5 : 0.0194692182232266 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 8 ; sigma_z = 2.703622 ; True Distribution: N ( 0 , 7.309573 ) .
Example 1 :
SNR = 8 ;
True Distribution: N ( 0 , 7.309573 ) ;
Number of Discoveries: 3768 ;
pihat0 = 0.07033265 ;
Log-likelihood by True Distribution N ( 0, 7.309573 ) : -24083.99 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -28842.7 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 6 : 4758.717 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.000677264290150885 ; 2 : 2.53874231778277 ; 3 : -0.00561937268793838 ; 4 : 3.72454384154009 ; 5 : 0.0210042933210722 ; 6 : 2.16093057958714 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -31542.48 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 5 : 7458.492 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00719984954595982 ; 2 : 1.97534018546734 ; 3 : -0.0159195281654859 ; 4 : 1.54212762351448 ; 5 : 0.0134058274996992 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 8 ;
True Distribution: N ( 0 , 7.309573 ) ;
Number of Discoveries: 3950 ;
pihat0 = 0.08759456 ;
Log-likelihood by True Distribution N ( 0, 7.309573 ) : -24216.05 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -29100.75 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 6 : 4884.702 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00471661063579975 ; 2 : 2.52271547230107 ; 3 : -0.0328067689142773 ; 4 : 3.70553494414676 ; 5 : -0.0498341710748214 ; 6 : 2.15158211636193 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -32137.13 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 5 : 7921.075 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.022164827818991 ; 2 : 1.97427468128317 ; 3 : 0.0092283343891227 ; 4 : 1.56649329906334 ; 5 : -0.0252294737613793 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 8 ;
True Distribution: N ( 0 , 7.309573 ) ;
Number of Discoveries: 3869 ;
pihat0 = 0.07653203 ;
Log-likelihood by True Distribution N ( 0, 7.309573 ) : -24190.71 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -29333.05 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 6 : 5142.335 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.00362625059133025 ; 2 : 2.59051580056953 ; 3 : -0.0110301347352026 ; 4 : 3.85770452188801 ; 5 : -0.0325210274551719 ; 6 : 2.26162663690691 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -32114.77 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 5 : 7924.057 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.00823123809677517 ; 2 : 1.97684485306676 ; 3 : 0.0108132563951897 ; 4 : 1.54891889152428 ; 5 : -0.0162193203234067 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 8 ;
True Distribution: N ( 0 , 7.309573 ) ;
Number of Discoveries: 3952 ;
pihat0 = 0.08656298 ;
Log-likelihood by True Distribution N ( 0, 7.309573 ) : -24187 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -29045.38 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 6 : 4858.372 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0206034448835079 ; 2 : 2.56735543697531 ; 3 : -0.0195051816112572 ; 4 : 3.80522687316745 ; 5 : -0.00201564696868051 ; 6 : 2.22210637473464 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -31944.19 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 5 : 7757.19 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.027016205328516 ; 2 : 1.98489748843074 ; 3 : -0.0270749603534199 ; 4 : 1.56565594649678 ; 5 : -0.00611079194533588 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 8 ;
True Distribution: N ( 0 , 7.309573 ) ;
Number of Discoveries: 3899 ;
pihat0 = 0.1077967 ;
Log-likelihood by True Distribution N ( 0, 7.309573 ) : -24166.42 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -29164.99 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 6 : 4998.566 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.0427398762094977 ; 2 : 2.61806859203705 ; 3 : 0.0777731701832885 ; 4 : 3.91059345316949 ; 5 : 0.0448564315430896 ; 6 : 2.26738457298974 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -31851.62 ;
Log-likelihood Ratio between True Distribution N ( 0, 7.309573 ) and Fitted Gaussian Derivatives with K = 5 : 7685.195 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.045548659776884 ; 2 : 1.98322811808131 ; 3 : 0.0659398154220372 ; 4 : 1.58559580543908 ; 5 : 0.0182038967082177 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 9 ; sigma_z = 2.990532 ; True Distribution: N ( 0 , 8.943282 ) .
Example 1 :
SNR = 9 ;
True Distribution: N ( 0 , 8.943282 ) ;
Number of Discoveries: 4482 ;
pihat0 = 0.07214675 ;
Log-likelihood by True Distribution N ( 0, 8.943282 ) : -25260.2 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -33591.66 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 6 : 8331.452 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0200952702053063 ; 2 : 2.70577564712737 ; 3 : 0.0234755479272126 ; 4 : 4.00771362970997 ; 5 : 0.0207216012591999 ; 6 : 2.29917777268476 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -37680.12 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 5 : 12419.92 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0355092626574237 ; 2 : 2.12868510144083 ; 3 : -0.0328340929155301 ; 4 : 1.71968825181984 ; 5 : -0.0155997016077485 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 9 ;
True Distribution: N ( 0 , 8.943282 ) ;
Number of Discoveries: 4331 ;
pihat0 = 0.06865425 ;
Log-likelihood by True Distribution N ( 0, 8.943282 ) : -25049.88 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -32879.85 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 6 : 7829.973 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0118481448044448 ; 2 : 2.7796986362372 ; 3 : 0.0147953186401661 ; 4 : 4.24114709990809 ; 5 : 0.0157825845679687 ; 6 : 2.50268448455396 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -36530.56 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 5 : 11480.68 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0396370307801417 ; 2 : 2.09691444712674 ; 3 : -0.0244298920072881 ; 4 : 1.66843078627915 ; 5 : 0.0167443134840248 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 9 ;
True Distribution: N ( 0 , 8.943282 ) ;
Number of Discoveries: 4546 ;
pihat0 = 0.08109916 ;
Log-likelihood by True Distribution N ( 0, 8.943282 ) : -25164.49 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -32855.24 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 6 : 7690.759 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0370511982981982 ; 2 : 2.72329041198641 ; 3 : -0.127103598366047 ; 4 : 4.0766935735135 ; 5 : -0.0976827927260967 ; 6 : 2.35066412909989 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -36872.49 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 5 : 11708.01 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0140648455733178 ; 2 : 2.1339367625933 ; 3 : -0.0494389492890455 ; 4 : 1.72841919139732 ; 5 : -0.0335277614382204 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 9 ;
True Distribution: N ( 0 , 8.943282 ) ;
Number of Discoveries: 4492 ;
pihat0 = 0.08146913 ;
Log-likelihood by True Distribution N ( 0, 8.943282 ) : -25203.14 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -33373.18 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 6 : 8170.031 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00501567898026982 ; 2 : 2.87465931120391 ; 3 : 0.00290829147950967 ; 4 : 4.44704795480167 ; 5 : 0.0132047958198434 ; 6 : 2.6190712213443 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -37233.33 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 5 : 12030.19 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.00413829110193593 ; 2 : 2.11361129838446 ; 3 : -0.0107119022734637 ; 4 : 1.71057016325765 ; 5 : -0.00346874900298212 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 9 ;
True Distribution: N ( 0 , 8.943282 ) ;
Number of Discoveries: 4466 ;
pihat0 = 0.08603856 ;
Log-likelihood by True Distribution N ( 0, 8.943282 ) : -25165.91 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -33165.64 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 6 : 7999.728 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00596118834903648 ; 2 : 2.76422782520799 ; 3 : -0.013950817489483 ; 4 : 4.20491448828645 ; 5 : -0.0290508365341806 ; 6 : 2.4568157323229 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -37088.68 ;
Log-likelihood Ratio between True Distribution N ( 0, 8.943282 ) and Fitted Gaussian Derivatives with K = 5 : 11922.77 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : 0.0132826541910612 ; 2 : 2.10603816814406 ; 3 : -0.000943359578635805 ; 4 : 1.70381670500689 ; 5 : -0.0249672044643002 ;
Zoom in to the left tail:
Zoom in to the right tail:
## SNR = 10 ; sigma_z = 3.316625 ; True Distribution: N ( 0 , 11 ) .
Example 1 :
SNR = 10 ;
True Distribution: N ( 0 , 11 ) ;
Number of Discoveries: 5011 ;
pihat0 = 0.07150713 ;
Log-likelihood by True Distribution N ( 0, 11 ) : -26181.19 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -38850.85 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 6 : 12669.66 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.0274236929352572 ; 2 : 2.89711168724025 ; 3 : -0.0223603095778489 ; 4 : 4.45623541443822 ; 5 : 0.00101775045562966 ; 6 : 2.62862143174931 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -44143.81 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 5 : 17962.61 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0385032350077447 ; 2 : 2.2210137346095 ; 3 : -0.0447036615903929 ; 4 : 1.81344530778662 ; 5 : -0.00202440280451175 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 2 :
SNR = 10 ;
True Distribution: N ( 0 , 11 ) ;
Number of Discoveries: 4990 ;
pihat0 = 0.07062845 ;
Log-likelihood by True Distribution N ( 0, 11 ) : -26216.58 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -39023.06 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 6 : 12806.48 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : 0.00188608241211791 ; 2 : 2.80497119845542 ; 3 : 0.012664085793072 ; 4 : 4.19662730932605 ; 5 : 0.00702606774451777 ; 6 : 2.39432486209987 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -44506.92 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 5 : 18290.34 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0139504523290885 ; 2 : 2.22195423539989 ; 3 : -0.0107302268163738 ; 4 : 1.82807934181925 ; 5 : 0.00109459089469162 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 3 :
SNR = 10 ;
True Distribution: N ( 0 , 11 ) ;
Number of Discoveries: 5017 ;
pihat0 = 0.07467248 ;
Log-likelihood by True Distribution N ( 0, 11 ) : -26207.72 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -44357.02 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 5 : 18149.3 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.000959029668663561 ; 2 : 2.22010699044865 ; 3 : -0.0135059729501484 ; 4 : 1.82792253239188 ; 5 : -0.0192050739456098 ;
Log-likelihood by Gaussian Derivatives with K = 4 : -44357.86 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 4 : 18150.14 ;
Normalized Weights of Gaussian Derivatives with K = 4 :
1 : 0.00215492288428279 ; 2 : 2.22008711070275 ; 3 : 0.00282896641163462 ; 4 : 1.82788088385223 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 4 :
SNR = 10 ;
True Distribution: N ( 0 , 11 ) ;
Number of Discoveries: 5066 ;
pihat0 = 0.0705596 ;
Log-likelihood by True Distribution N ( 0, 11 ) : -26197.01 ;
Log-likelihood by Gaussian Derivatives with K = 6 : -39090.32 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 6 : 12893.31 ;
Normalized Weights of Gaussian Derivatives with K = 6 :
1 : -0.00369120704032752 ; 2 : 3.12154933079295 ; 3 : -0.00365745072147679 ; 4 : 4.9296943766698 ; 5 : 0.00379751707834492 ; 6 : 2.90730030596267 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -43985.54 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 5 : 17788.53 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.00978192326482823 ; 2 : 2.25189648665813 ; 3 : -0.00479443179567208 ; 4 : 1.84445913631995 ; 5 : 0.0167719092761371 ;
Zoom in to the left tail:
Zoom in to the right tail:
Example 5 :
SNR = 10 ;
True Distribution: N ( 0 , 11 ) ;
Number of Discoveries: 4924 ;
pihat0 = 0.08210577 ;
Log-likelihood by True Distribution N ( 0, 11 ) : -26103.44 ;
Log-likelihood by Gaussian Derivatives with K = 5 : -43511.18 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 5 : 17407.74 ;
Normalized Weights of Gaussian Derivatives with K = 5 :
1 : -0.0169044216000957 ; 2 : 2.21803447163974 ; 3 : -0.0170247648783184 ; 4 : 1.82679005604263 ; 5 : -0.000477147476056258 ;
Log-likelihood by Gaussian Derivatives with K = 4 : -43511.18 ;
Log-likelihood Ratio between True Distribution N ( 0, 11 ) and Fitted Gaussian Derivatives with K = 4 : 17407.74 ;
Normalized Weights of Gaussian Derivatives with K = 4 :
1 : -0.0168231555661593 ; 2 : 2.21803546066004 ; 3 : -0.01661630451235 ; 4 : 1.82679077771681 ;
Zoom in to the left tail:
Zoom in to the right tail:
As soon as SNR is increasing, the Gaussian derivatives stop fitting well. The weights don’t look reasonable, and the fitting in tails is especially bad.
It indicates that this method can identify deviation of the empirical distribution from the standard normal caused by correlated null from that caused by true effects when the effects are large.
By the way, BH procedure seems very sensible in this task. It gives a lot of discoveries even when SNR = 1 that are too many to be credibly seen as from correlated null. Even SNR = 0 case, BH arguably gives more than expected discoveries, which indicates it’s more likely to be true effects rather than correlation.
So at this moment, we should concentrate on larger effects, whereas keep the SNR = 1 case, as well as BH’s “surprisingly good performance” in mind.
sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] CVXR_0.95 EQL_1.0-0 ttutils_1.0-1 ashr_2.2-2
loaded via a namespace (and not attached):
[1] gmp_0.5-13.1 Rcpp_0.12.16 compiler_3.4.3
[4] git2r_0.21.0 workflowr_1.0.1 R.methodsS3_1.7.1
[7] R.utils_2.6.0 iterators_1.0.9 tools_3.4.3
[10] digest_0.6.15 bit_1.1-12 evaluate_0.10.1
[13] lattice_0.20-35 Matrix_1.2-12 foreach_1.4.4
[16] yaml_2.1.18 parallel_3.4.3 Rmpfr_0.6-1
[19] ECOSolveR_0.4 stringr_1.3.0 knitr_1.20
[22] rprojroot_1.3-2 bit64_0.9-7 grid_3.4.3
[25] R6_2.2.2 rmarkdown_1.9 magrittr_1.5
[28] whisker_0.3-2 scs_1.1-1 backports_1.1.2
[31] codetools_0.2-15 htmltools_0.3.6 MASS_7.3-47
[34] stringi_1.1.6 doParallel_1.0.11 pscl_1.5.2
[37] truncnorm_1.0-7 SQUAREM_2017.10-1 R.oo_1.21.0
This reproducible R Markdown analysis was created with workflowr 1.0.1