Last updated: 2018-05-15

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 388e65e

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/BH_robustness_cache/
        Ignored:    analysis/FDR_Null_cache/
        Ignored:    analysis/FDR_null_betahat_cache/
        Ignored:    analysis/Rmosek_cache/
        Ignored:    analysis/StepDown_cache/
        Ignored:    analysis/alternative2_cache/
        Ignored:    analysis/alternative_cache/
        Ignored:    analysis/ash_gd_cache/
        Ignored:    analysis/average_cor_gtex_2_cache/
        Ignored:    analysis/average_cor_gtex_cache/
        Ignored:    analysis/brca_cache/
        Ignored:    analysis/cash_deconv_cache/
        Ignored:    analysis/cash_fdr_1_cache/
        Ignored:    analysis/cash_fdr_2_cache/
        Ignored:    analysis/cash_fdr_3_cache/
        Ignored:    analysis/cash_fdr_4_cache/
        Ignored:    analysis/cash_fdr_5_cache/
        Ignored:    analysis/cash_fdr_6_cache/
        Ignored:    analysis/cash_plots_cache/
        Ignored:    analysis/cash_sim_1_cache/
        Ignored:    analysis/cash_sim_2_cache/
        Ignored:    analysis/cash_sim_3_cache/
        Ignored:    analysis/cash_sim_4_cache/
        Ignored:    analysis/cash_sim_5_cache/
        Ignored:    analysis/cash_sim_6_cache/
        Ignored:    analysis/cash_sim_7_cache/
        Ignored:    analysis/correlated_z_2_cache/
        Ignored:    analysis/correlated_z_3_cache/
        Ignored:    analysis/correlated_z_cache/
        Ignored:    analysis/create_null_cache/
        Ignored:    analysis/cutoff_null_cache/
        Ignored:    analysis/design_matrix_2_cache/
        Ignored:    analysis/design_matrix_cache/
        Ignored:    analysis/diagnostic_ash_cache/
        Ignored:    analysis/diagnostic_correlated_z_2_cache/
        Ignored:    analysis/diagnostic_correlated_z_3_cache/
        Ignored:    analysis/diagnostic_correlated_z_cache/
        Ignored:    analysis/diagnostic_plot_2_cache/
        Ignored:    analysis/diagnostic_plot_cache/
        Ignored:    analysis/efron_leukemia_cache/
        Ignored:    analysis/fitting_normal_cache/
        Ignored:    analysis/gaussian_derivatives_2_cache/
        Ignored:    analysis/gaussian_derivatives_3_cache/
        Ignored:    analysis/gaussian_derivatives_4_cache/
        Ignored:    analysis/gaussian_derivatives_5_cache/
        Ignored:    analysis/gaussian_derivatives_cache/
        Ignored:    analysis/gd-ash_cache/
        Ignored:    analysis/gd_delta_cache/
        Ignored:    analysis/gd_lik_2_cache/
        Ignored:    analysis/gd_lik_cache/
        Ignored:    analysis/gd_w_cache/
        Ignored:    analysis/knockoff_10_cache/
        Ignored:    analysis/knockoff_2_cache/
        Ignored:    analysis/knockoff_3_cache/
        Ignored:    analysis/knockoff_4_cache/
        Ignored:    analysis/knockoff_5_cache/
        Ignored:    analysis/knockoff_6_cache/
        Ignored:    analysis/knockoff_7_cache/
        Ignored:    analysis/knockoff_8_cache/
        Ignored:    analysis/knockoff_9_cache/
        Ignored:    analysis/knockoff_cache/
        Ignored:    analysis/knockoff_var_cache/
        Ignored:    analysis/marginal_z_alternative_cache/
        Ignored:    analysis/marginal_z_cache/
        Ignored:    analysis/mosek_reg_2_cache/
        Ignored:    analysis/mosek_reg_4_cache/
        Ignored:    analysis/mosek_reg_5_cache/
        Ignored:    analysis/mosek_reg_6_cache/
        Ignored:    analysis/mosek_reg_cache/
        Ignored:    analysis/pihat0_null_cache/
        Ignored:    analysis/plot_diagnostic_cache/
        Ignored:    analysis/poster_obayes17_cache/
        Ignored:    analysis/real_data_simulation_2_cache/
        Ignored:    analysis/real_data_simulation_3_cache/
        Ignored:    analysis/real_data_simulation_4_cache/
        Ignored:    analysis/real_data_simulation_5_cache/
        Ignored:    analysis/real_data_simulation_cache/
        Ignored:    analysis/rmosek_primal_dual_2_cache/
        Ignored:    analysis/rmosek_primal_dual_cache/
        Ignored:    analysis/seqgendiff_cache/
        Ignored:    analysis/simulated_correlated_null_2_cache/
        Ignored:    analysis/simulated_correlated_null_3_cache/
        Ignored:    analysis/simulated_correlated_null_cache/
        Ignored:    analysis/simulation_real_se_2_cache/
        Ignored:    analysis/simulation_real_se_cache/
        Ignored:    analysis/smemo_2_cache/
        Ignored:    data/LSI/
        Ignored:    docs/.DS_Store
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/fig/
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    html eaaa5f9 LSun 2018-05-14 Build site.
    rmd a9d12a8 LSun 2018-05-14 wflow_publish(c(“analysis/BH_robustness.rmd”, “analysis/index.Rmd”))
    html ddf9062 LSun 2018-05-12 Update to 1.0
    rmd cc0ab83 Lei Sun 2018-05-11 update
    html adeab80 LSun 2018-05-06 Build site.
    rmd 0b0a394 LSun 2018-05-06 wflow_publish(c(“analysis/BH_robustness.rmd”, “analysis/gd_w.rmd”))
    html 9de2617 LSun 2018-04-14 Build site.
    rmd 76da3c2 LSun 2018-04-14 wflow_publish(“analysis/BH_robustness.rmd”)
    rmd ae83c56 Lei Sun 2018-04-14 BH robustness

We apply BH to correlated data, generated from pure simulation or real data, to have a sense how robust BH is for correlation.

source("../code/gdash_lik.R")
source("../code/gdfit.R")
source("../code/count_to_summary.R")
library(limma)
library(edgeR)
library(ashr)
library(plyr)
library(ggplot2)
library(reshape2)
set.seed(777)

Simulated Data

d <- 10
n <- 1e4
B <- matrix(rnorm(n * d), n, d)
Sigma <- B %*% t(B) + diag(n)
sigma <- diag(Sigma)
Rho <- cov2cor(Sigma)
par(mar = c(5.1, 4.1, 1, 2.1))
hist(Rho[lower.tri(Rho)], xlab = expression(rho[ij]), main = "")

Expand here to see past versions of unnamed-chunk-2-1.png:
Version Author Date
eaaa5f9 LSun 2018-05-14
rhobar <- c()
for (l in 1 : 10) {
  rhobar[l] <- (sum(Rho^l) - n) / (n * (n - 1))
}
nsim <- 1e4
Z.list <- W <- list()
for (i in 1 : nsim) {
z <- rnorm(d)
Z <- B %*% z + rnorm(n)
Z <- Z / sqrt(sigma)
Z.list[[i]] <- Z
Z.GD <- gdfit.mom(Z, 100)
W[[i]] <- Z.GD$w
}
Z.sim <- Z.list
W.sim <- W

GTEx data

r <- readRDS("../data/liver.rds")
top_genes_index = function (g, X) {
  return(order(rowSums(X), decreasing = TRUE)[1 : g])
}
lcpm = function (r) {
  R = colSums(r)
  t(log2(((t(r) + 0.5) / (R + 1)) * 10^6))
}
nsamp <- 5
ngene <- n
Y = lcpm(r)
subset = top_genes_index(ngene, Y)
r = r[subset,]
nsim <- 1e4
Z.list <- W <- list()
for (i in 1 : nsim) {
  ## generate data
  counts <- r[, sample(ncol(r), 2 * nsamp)]
  design <- model.matrix(~c(rep(0, nsamp), rep(1, nsamp)))
  summary <- count_to_summary(counts, design)
  Z <- summary$z
  Z.list[[i]] <- Z
  Z.GD <- gdfit.mom(Z, 100)
  W[[i]] <- Z.GD$w
}
Z.gtex <- Z.list
W.sim <- W

Global null setting

Simulated data

p <- lapply(Z.sim, function(x) {pnorm(-abs(x)) * 2})
q <- lapply(p, p.adjust, method = "BH")
q.cutoff <- seq(0.01, 0.99, by = 0.01)
fd <- list()
for (i in seq(q.cutoff)) {
  fd[[i]] <- lapply(q, function(x) {sum(x <= q.cutoff[i])})
}
fdp <- lapply(fd, function(x) {mean(x != 0)})
plot(q.cutoff, fdp, xlab = "Nominal FDR", ylab = "FDP",
     xlim = range(q.cutoff, fdp), ylim = range(q.cutoff, fdp),
     type = "l")
abline(0, 1, col = "red", lty = 3)

Expand here to see past versions of unnamed-chunk-9-1.png:
Version Author Date
eaaa5f9 LSun 2018-05-14

real data

p <- lapply(Z.gtex, function(x) {pnorm(-abs(x)) * 2})
q <- lapply(p, p.adjust, method = "BH")
q.cutoff <- seq(0.001, 0.200, by = 0.001)
fd <- list()
for (i in seq(q.cutoff)) {
  fd[[i]] <- lapply(q, function(x) {sum(x <= q.cutoff[i])})
}
fdp <- lapply(fd, function(x) {mean(x != 0)})
plot(q.cutoff, fdp, xlab = "Nominal FDR", ylab = "FDP",
     xlim = range(q.cutoff, fdp), ylim = range(q.cutoff, fdp),
     type = "l")
abline(0, 1, col = "red", lty = 3)

Expand here to see past versions of unnamed-chunk-10-1.png:
Version Author Date
eaaa5f9 LSun 2018-05-14

\(\theta \sim 0.95 \delta_0 + 0.05 \delta_3\)

theta <- list()
for (j in 1 : 1e4) {
  theta[[j]] <- sample(c(rep(0, 9.5e3), rep(3, 0.5e3)))
}
X.gtex <- list()
for (j in 1 : 1e4) {
  X.gtex[[j]] <- theta[[j]] + Z.gtex[[j]]
}
p <- lapply(X.gtex, function(x) {pnorm(-abs(x)) * 2})
q <- lapply(p, p.adjust, method = "BH")
q.cutoff <- seq(0.001, 0.200, by = 0.001)
fdp <- tdp <- list()
for (i in seq(q.cutoff)) {
  fdp.vec <- tdp.vec <- c()
  for (j in 1 : 1e4) {
    fdp.vec[j] <- sum(theta[[j]][q[[j]] <= q.cutoff[i]] == 0) / max(1, length(q[[j]] <= q.cutoff[i]))
    tdp.vec[j] <- sum(theta[[j]][q[[j]] <= q.cutoff[i]] != 0) / 1e3
  }
  fdp[[i]] <- fdp.vec
  tdp[[i]] <- tdp.vec
}
fdp.avg <- lapply(fdp, mean)
tdp.avg <- lapply(tdp, mean)
plot(q.cutoff, fdp.avg, type = "l", xlim = range(q.cutoff, fdp.avg), ylim = range(q.cutoff, fdp.avg), xlab = "Nominal FDR", ylab = "Average FDP")
abline(0, 1, col = "red")

Expand here to see past versions of unnamed-chunk-11-1.png:
Version Author Date
eaaa5f9 LSun 2018-05-14
plot(q.cutoff, tdp.avg, type = "l", xlab = "Nominal FDR", ylab = "TDP")

Expand here to see past versions of unnamed-chunk-11-2.png:
Version Author Date
eaaa5f9 LSun 2018-05-14

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.4

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] workflowr_1.0.1   Rcpp_0.12.16      digest_0.6.15    
 [4] rprojroot_1.3-2   R.methodsS3_1.7.1 backports_1.1.2  
 [7] git2r_0.21.0      magrittr_1.5      evaluate_0.10.1  
[10] stringi_1.1.6     whisker_0.3-2     R.oo_1.21.0      
[13] R.utils_2.6.0     rmarkdown_1.9     tools_3.4.3      
[16] stringr_1.3.0     yaml_2.1.18       compiler_3.4.3   
[19] htmltools_0.3.6   knitr_1.20       

This reproducible R Markdown analysis was created with workflowr 1.0.1